BRILLIANT BRAINS

AI/ML Methods to Develop Superior Next Gen Autonomous
Learning Robot Systems for Industrial Terrestrial and
Space Applications*

Prof. Dr. V. David Sanchez A., Ph.D.
Brilliant Brains, Palo Alto, California
December 2024

Abstract

Optimization, planning and related processes host extremely relevant and challenging problems
found in multiple scientific and industrial disciplines including robotics, VLSI among many others.
They can be modeled in different ways with the generic goal in mind to reach the final state from
a begin state in some optimal fashion, see Figure 1(a). I have launched for decades new programs
and have conceived, developed and incorporated innovative Al/ML methods, algorithms to solve
those problems in multiple hightech disciplines, among others, e.g., in automation, robotics, space,
defense, computer vision, VLSI [6, 7, 8, 9]. Figure 1(b) and (c) show the deep impact high technology
failures do cause to human life and the corporations’ bottom line. One fatal accident of a Tesla
model S autonomous vehicle after its collision with a Contra Costa County, California fire truck on
February 18, 2023 and the chip division bug FDIV that cost Intel U.S.$ 475 million in 1994 are
shown as examples. That restresses on the other hand the indispensable role of the verification of
systems applying those new technologies in the framework of Research and Technology Development
programs and projects throughout all industries, a part of my current activities, e.g. working with
the design and verification of some of the most advanced system development programs at the NASA
Jet Propulsion Laboratory (JPL) [4] and the U.S. Space Force (USSF) [5]. Figure 1(d) shows one of
a multitude of industrial robotic applications in which a new generation of autonomous learning
robots may have significant positive impact.

One area in which there has been steady progress w.r.t. the time and sample complexity of the
learning systems applied, in particular for robotic applications, is in the provision of more power-
ful hardware to support industrial, physical Al-based systems, from humanoids to factories, that
need to be accelerated across training, simulation and inference, see Figure 2. At the top row, sev-
eral examples of such asset-, fleet-, factory-, warehouse-, network-, and infrastructure-scale robotic
systems are shown. Well beyond those scenarios, the ecosystem of applications will extend among
others to surgical rooms, data centers, traffic control systems, and entire smart cities operated
by autonomous, interactive systems embodied by physical Al. Typical robotic embodiments that can
perceive, reason, plan, act, and learn include manipulator arms, autonomous mobile robots (AMRs),
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Figure 1: Sequential solution determination, optimization (a) Potential equivalent multi-paths between begin
and end states [9] (b) Autonomous robotic vehicles’ issues [TESLA] (c) VLSI electronic circuits’ issues [INTEL]
(d) Industrial robotic welding [KUKA]

Figure 2: Applications of autonomous learning robotic systems [NVIDIA]

and humanoids. The bottom row of Figure 2 shows for the highly active of humanoid robot develop-
ment to the left key areas of required improvement including dexterity and manipulation, balance
and coordination, navigation, perception, cognition, and functional safety. On the right, a kitchen
assistant is shown which needs to operate in different kitchen environments and autonomusly per-
form the specified tasking (actions) including, as shown, recognition and appropriate manipulation
of kitchen objects.

For tasks involving sequential decision-making and dynamic environments needed in robotics,
for a relatively long time, reinforcement learning (RL) [10] was the preferred choice next to supervised
and unsupervised learning which could be applied in robotic recognition and classification subtasks
when labeled data was either available or scarce, respectively. RL allows the interaction with the
robot’s environment and rewards successful behaviors to generate optimal actions for the task at
hand. Actor-critic methods [11] aim at combining the strong points of actor-only and critic-only
methods, e.g., when used for reinforcement learning. More complex state representations and the
improvement of learning capabilities were enabled when deep neural networks (DNNs) were incor-
porated into RL leading to the origination of deep reinforcement learning (DRL) [12, 13].

Enabling artificial systems with fast learning capability has been a challenge for quite a while.
Attempts to provide solutions led for example to imitation learning (IL) [14] which does not require
careful, hand-crafted reward functions. Demonstrations (teaching) are typically provided in the
form of state-action trajectories. The goal is learning behavior policy from these demonstrations.
In more formal terms, given a finite dataset, in a practical setting: human demonstration data,
& ={n---7n}of trajectories 7;,,7 = (s,a),i = 1--- N with s, a being the states and actions, respectively,
the IL goal is to train a policy 7(a|s, #) to reproduce an expert policy 7*(a|s), typically provided by the
aforementioned finite dataset. (S,A,7,R,po,7) defines the asummed underlying Markov decision
process (MDP) with S, .4 being the state and action spaces, respectively. 7 : S x A — S is the state-



transition dynamics and R : § x A — R is the reward function, py(s) is the initial state probability
distribution, v € [0, 1] is the discount factor to weight rewards. For a given timestep ¢ and s;,r; the
state and the reward following a policy from state s; until the end of the episode at timestep 7', the
optimal expert policy is such that 7* = argmax,cn E;-[Ro] and R, is the discounted sum of rewards
according to: R; = Z;{;é URT TR

Early attempts used Behavioral Cloning (BC) to supervised-learn policy mapping environment
observations to optimal actions, susceptible to distribution shift [15]. The DAGGER (Dataset Ag-
gregation) method [16] was introduced to iteratively train a stationary deterministic policy. It can
provide a learning reduction with strong performance guarantees in both imitation learning and
structured prediction. It addresses the issue of compounding errors in traditional BC approaches.
Further improvements were provided among others by inverse reinforcement learning (IRL) [17] and
inverse Q-learning (IQL) [18]. IRL extracts a reward function from observed optimal behavior. The
issue of degeneracy, i.e., the existence of a large set of reward functions needs to be addressed. In
one scenario, when the known policy is only given by a finite set of observed trajectories, a natural
heuristics is proposed and the issue resolved using linear programming by choosing the reward func-
tion that maximally differentiates the observed policy from other, sub-optimal policies. IQL learns
directly one single soft-Q function from expert data that implicitly represent both, reward and policy.
It enables non-adversarial, dynamics-aware IL in offline and online settings. A wider exploration,
range of actions in search of, while learning the optimal Q-function is promoted by the use of a
soft-Q function. Softness is added via an entropy term to the reward calculation, controlled by a
temperature parameter. The action probability is determined by softmaxing the Q-values which are
assigned to state-action pairs and represent the quality, the expected reward for taking a particular
action from the state at hand.

Figure 3(a) shows the set-up of Adversarial Imitation Learning with an agent and a discrimina-
tor posed as a minimax game [19], in which the agent policy model generates actions interacting
with an environment to attain the highest rewards using RL, while the discriminator, similar to in
GANSs, acts as a reward model that indicates how expert-like an action is. The approach also suffers
from mode collapse and gradient penalization. Figure 3(b) shows the architecture used in BESO
(BEhavior generation with ScOre-based Diffusion Policies) [20], an approach which applies score-
based diffusion models (SDMs) to introduce a policy representation for goal-conditioned imitation
learning (GCIL) behavior. In GCIL, the agent learns to perform actions from expert demonstrations
based on a specified goal state. On the left, the action generation process is depicted. In the middle,
the model architecture used [21] is shown that incorporates conditioning functions ¢'s according
to: Dg(als,g,0t) = csrip(0t)a + cout(0r) - Fo(cin(0t)a, s, g, Cnoise(0t)), includes two preconditoning layers
and skip-connections. On the right, the inner model Fy(a, s, g,0;) is shown as a transformer with
causal masking. Combining BESO with classifier-free guidance (CFG) training of SDMs, it can learn
a goal-dependent policy and a goal-independent policy simultaneously. Figure 3(c) shows on the left
an outline of the IRL problem and its involved minimax game over policy 7 and rewards r. The expert
behavior at the unique saddle point solution (7*, r*) is found using RL. On the right, the IQL problem
as well as a red line representing the optimal policy manifold, the softmax action of Q, are shown.
This time, the problem is posed over the policy 7 and the @Q-function @ to find the solution (7*, Q*).
The key insight is to allow the Q-function to concurrently represent the optimal behavior policy and
the reward function. RL does not need to find the policy any more. Each potential Q-function can be
mapped to a pair of discriminator and generator networks which leads to a simple non-adversarial
algorithm used for imitation.

Diffusion probabilistic models (DPMs) [22], a type of generative models, create new data by dif-
fusing an available input data distribution ¢(x(?)) with noise and learning how to dediffuse the noise
from the noisy data. One main goal is to convert the data into an analytically tractable distri-
bution 7(x). Adding and removing the noise, within the forward (inference) and reverse diffusion
process respectively, happens progressively. The reversing process effectively reconstructs the orig-
inal data distribution or generates similar new data with high quality. The associated algorithm
makes use of a Markov chain [23] to gradually convert one distribution into another. The forward
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Figure 3: Imitation learning (IL) (a) Inverse Reinforcement Learning (IRL (b) BEhavior generation with
ScOre-based Diffusion Policies (BESO) (c) Inverse Q-Learning (IQL)

trajectory repeatedly applies the Markov diffusion kernel 7, with g; being the diffusion rate ac-
cording to: ¢(x®|xtD) = T, (x®|x*V; 8,). Performing T steps of diffusion, the reversal trajectory
describes the same trajectory, but in reverse, according to: p(x(*7)) = p(x™) [T, p(xt=D|x®).
Learning involves estimating small perturbations to a diffusion process, i.e., training consists of
finding the reverse Markov transitions which maximize the lower bound K on the log likelihood
L= [ dx©g(x)log p(x(?)) according to p(x"V[x()) = arg max, -1y K. In a quasi-static process,
the forward and reverse trajectories are identical and therefore: L = K. The reversal of the Markov
diffusion chain which maps data to a noise distribution is estimated, the result being a model that
can learn to fit any data distribution and remaining train-tractable.

The body of knowledge to solve related problems has emanated from nonequilibrium statistical
physics including Langevin dynamics [24] which models the dynamics of molecular systems using
Langevin equations that apply simplified models and account for omitted degrees of freedom us-
ing stochastic differential equations (SDEs). Langevin equations, reformulated as Fokker-Planck
equations [25, 26] govern the probability distribution p(x) of the random variable x. Fokker-Planck
equations are partial differential equations (PDEs) that describe the time evolution of the prob-
ability density function of the velocity of a particle under the influence of drag forces and ran-
dom forces, as in Brownian motion. Further insight into nonequilibrium statistical physics, the
Langevin and Fokker-Planck equations, their generalizations, solutions, and applications can be
gained, e.g. in [27, 28]. To solve associated diffusion equations, we use stochastic differential equa-
tions (SDEs) which model stochastic processes according to: dx = f(x,¢) dt + g(¢t) dw (forward It6
SDE) where f(x,t) and ¢(¢) are the drift and diffusion coefficients, which represent the determin-
istic and stochastic influences, respectively, d¢ and dw are the infinitesimal changes in time and
noise (randomness), respectively. For the previously given forward SDE, the corresponding reverse
SDE [29] is: dx = [f(x,t) — g%(t) - Vxlogp:(x)] dt + g(t) dw. The score function of any given con-
tinuously differentiable probability density p(x) is defined as v/« logp(x), needed to determine the
reverse SDE as herewith shown. Figure 4(a) shows a solution of a 1-dimensional Fokker-Planck
equation and two snapshots of its time evolution. Figure 4(b) shows three 2-dimensional clus-
ters (K = 3). For Gaussian mixture models (GMMs), each cluster is centered at the means ji,
has an ellipsoid around it of dimensions given by the covariance matrix ¥; and a mixture compo-
nent weight 7;,. The a-posteriori probability can be estimated as: p(Z) = Zszl 7, - N (Z|fig, Xx) with
N(Z|fik, Sk) = \/ﬁexp (—1(& — fix)"S; (& — fix)) and the constraint Y5, m; = 1. Figure 4(c)
shows tractable forward and reverse diffusion processes in score-based generative modeling with
SDEs, left and right, respectively. Perturbed data distributions evolve according to an SDE as the
noise intensifies. With that SDE, data is mapped to the prior, a noise distribution, and estimating
the score v/« logp:(x), the SDE is reversed for generative modeling. The forward diffusion process
consists of {Z(t)}]_,,t € [0,7] with Z(0) ~ po and Z(T) ~ pr given a dataset of samples. pg, pr are the
data distribution and the prior distribution, respectively.

Connections between DPMs and denoising score matching with Langevin dynamics were in-
troduced in denoising diffusion probabilistic models (DDPMs) [31]. The associated algorithm was
trained on a weighted variational bound accordingly. These models allow for progressive lossy de-
compression generalizing autoregressive decoding. To sample from the corresponding distribution,
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Figure 4: Gaussian probability distributions (a) Fokker-Planck equation: time evolution of probability
density function (pdf) (b) Mixture of Gaussians: Three clusters in two dimensions (c) Forward and reverse
diffusion processes and corresponding SDEs [30]
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Figure 5: Markov chains and diffusion probabilistic models (a) Markov chain formal definition [MIT] (b)
DDPM reverse trajectory [31] (c) DPM on 2-dim Swiss roll data [22]

the iterative evaluation, a noisy gradient ascent on the log-density log p(x), is performed applymg
annealed Langevin dynamics: x; « x;—1 + a; - Sg(X¢—1,04) + V20 24,1 <i < L1 <t<T. a;=€-—% >0

is the step size, ¢ is the step size parameter, L is the number of steps, {ol} -, is a sequence of n01se
scales, T is the number of iterations, diffusions, z, ~ N (0,I). %o is an initial sample from any prior
distribution 7(x). sg is the output of a joint neural network, called a noise conditional score net-
work (NCSN), trained to approximate v/« logp(x), the score function. Figure 5(a) shows the formal
definition of a Markov chain through the so called Markov property. Provided a graph of states and
transitions with a probability assigned to each transition is given, according to the Markov property,
a memoryless property of a stochastic process, only the present state influences the probability dis-
tribution of future states. In addition, being probabilities, they need to add up on a per state basis
to 1. Figure 5(b) shows on the far left of the directed graph the input to the reverse trajectory of
the used denoising diffusion probabilistic model (DDPM), visibly only noise, and on the far right the
reconstructed original image. Figure 5(c) shows key modeling features of the diffusion probabilistic
model (DPM) used on the 2-dim Swiss roll data. Time slices from the forward trajectory q(x(o'“T))
are shown in the top row. The corresponding time slices from the trained reverse trajectory p(x(*7))
are shown in the middle row. Finally, the bottom row shows the drift term f,(x®),¢) — x® for the
reverse diffusion process of the same DPM when a radial basis function (RBF) network [32] is used
to generate f,(x*,¢) and fs(x®,t). These functions define the mean and covariance of the reverse
Markov transitions for a Gaussian, respectively.

Figure 6(a) shows the density function p(x) as contours and the score function yxlogp(x) as
vector field of a mixture of two Gaussians. Once the score-based model sy(X) ~ 7/x log p(x) has been
trained, Figure 6(b) shows how to use the Langevin dynamics to sample from the mixture of those
two Gaussians. Figure 6(c) shows the annealed Langevin dynamics, a sequence of Langevin chains
with gradually decreasing noise scales. Figure 6(d) is an example of the perturbation of data x with
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Figure 6: Annealed Langevin dynamics [CALTECH] (a) probability density and score function (b) sampling (c)
sequence of Langevin chains with gradually decreasing noise scales (d) reaching a data point at score zero.

noise ¢ of a normal distribution N(0,071) with decreasing noise scales o;, with p.d.f. p,,(x) and
score function sy(x, 0;). It also shows the gradual approach towards a data point through an applied
annealed Langevin dynamics sequence, iteration.

Variational auto-encoders (VAEs) [33] and generative adversarial networks (GANs) [34] are no-
table examples of generative modeling [35] methods and belong to the likelihood-based and implicit
generative models [36], respectively. Other likelihood-based models include autoregressive mod-
els [37] that use past values to predict next values in a value sequence, normalizing flow models [38]
that learn complex probability distributions by transforming a distribution into a more intricate one
through a series of invertible transformations and provide accurate density estimation and sampling
from the learned distribution, and Energy-Based Models (EBMs) [39] that encode dependencies be-
tween variables by associating a scalar energy, a measure of compatibility, to each configuration
of the variables, and using a loss functional during learning to measure the quality of the avail-
able energy functions. The search, development, and use of unified frameworks to understand and
compare learning methods comes handy. For example, in the case of Energy-based learning, both
probabilistic and non-probabilistic learning can be viewed from that perspective and the absence of
the normalization condition allows a much more flexible design of learning machines. So is the case
too with score-based generative models, diffusion models in machine learning which, without know-
ing the full probability density function of the data distribution and making use of the stochastic
differential equation (SDE) framework, learn the score function, i.e., the gradient of the log prob-
ability density function, recreate the training data and generate new data. They learn to navigate
towards high probability areas of data space only using the estimated gradient.

Examples of advances in realized autonomous and learning capabilities built in robotic systems
follow. It is by no means an exhaustive choice. Multiple techniques my teams and I developed
and demonstrated in space missions are now applied to massive terrestrial applications including
to develop real-time visual-based navigation for autonomous vehicles [40], driving and flying, or to
demonstrate via teleoperation [4 1] new skills to autonomous, learning robots via diffusion policies.
Figure 7(a) to (d) show ARMAR-III humanoid robots designed and built at the Karlsruhe Institute of
Technology (KIT), my alma mater, conceived as household assistants and Figure 7(e) and (f) show
ARMAR VI conceived for maintenance and repair tasks in industrial environments. ARMAR-III can
perform the following tasks: it can move independently in the kitchen, open the refrigerator, get out a
bottle of apple juice, recognize and grab different objects without damaging them or letting them fall
down, it can open, load, and empty the dishwasher. The robot hand has built-in sensors to determine
the position of the robot fingers, pressure and tactile sensors provide contact and force information.
With that information, it can determine whether it has something in its hand or it is touching and
whether the object is deformable or not. It has 4 cameras as eyes, two close-up and two wide/long-
shot cameras to determine the distance to obstacles and other objects it needs to manipulate. To
avoid collisions while moving around, it generates an internal model of its environment. For a natural
communication with humans, it understands human language. It is able to store what it learns and
recall it when needed. It can learn through imitation by observing human demonstrations of new
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Figure 7: Imitation learning applied to humanoid robotics [KIT] (a) navigation (b) vision (c¢) human
demonstration (d) robot imitation (e) receive spray bottle (f) help take cover down

skills. For example, from human demonstrations, it can learn, extract the form of the movement to
clean up the table and the frequency of the movement. It can then reproduce the demonstrations’
movement through its own movements and can adapt what it learned to clean up smaller or larger
areas or to do it slower or faster. More recently, a memory system intended among others to build a
bridge between sub-symbolic (sensorimotor) representation and symbolic (semantic) representation
implemented in the robot software framework ArmarX has been described in [42].

Continuing advances in modern Machine Learning (ML) [43] and Deep Learning (DL) [44] have
led to Generative Al (Gen Al) [45] and Foundation Models (FMs) [46] which notably include Large
Language Models (LLMs) [47, Chapter 10]. Multiple Natural Language Processing (NLP) [48] tasks
including summarization, question answering, sentiment, and machine translation can be posed as
word prediction tasks, and as such, can be addressed using LLMs. whereas transformers have be-
come the dominant architecture for state-of-the-art solutions to a variety of NLP tasks [49]. On the
other hand, LLMs can also perform harmful tasks including bias, stereotypes, hallucinations, misin-
formation, privacy and copyright infringement, and propaganda. Those issues need to be addressed
and solved when building real-world learning systems. If we go beyond language to behavior, i.e.,
develop artificial learning systems including intelligent, autonomous, learning robotic systems, then
we need LBMs (Large Behavior Models) or the equivalent which learn from expert demonstrations
diverse tasks including action patterns and contextual interactions. Rather than word prediction,
emphasis is on actions, choices, and preferences and their derivations after training when exposed
to unseen observations. They typically provide enhanced RL capabilities in corresponding appli-
cations, in particular with real-world feedback, but not only. LBMs have allowed, for example the
Toyota Research Institute (TRI) and others, to be able to train learning robots with much less data
and even to do it overnight per new skill as per their own reports [50]. Behavior cloning methods
based on diffusion policies and human demonstrations have been the key for those developments.
Diffusion policy is a novel way of generating robot behavior. As previously covered, the robot’s vi-
suomotor policy is essentially represented as a conditional denoising diffusion process. Several
dextreous skills trained to TRI learning robots are shown in Figure 8. Multiple advanced applica-
tions of autonomous learning robots using beyond state-of-art learning methods including imitation
and diffusion models are presented that represent a continuation of my work towards the factual
intoduction of neurocomputers in industrial applications [51] and learning robots [52] to fulfill the
inspiring dreams and bottom-line, factual needs of the industry and the marketplace. Associated
success has originated partly by the incessant efforts towards increasing modeling dynamics [53]
and the autonomy of advanced robotics systems, not only for space environments [54] but also for
terrestrial applications [40, 41]. The integration of advanced Al/ML methods into real robotic sys-
tems is enabling them to become more human and obtain superhuman capabilities for terrestrial
and space applications [55] and establishing a sophisticated automation and robotic infrastucture
past AIOps for new manufacturing factories, but not only [56]. Multi-billion dollar investment oppor-
tunities and multi-trillion dollar market opportunities for autonomous learning robots are rapidly
developing [57, 58] in diverse market segments including generalizable robots and robotaxi platforms
redefining personal mobility.



Figure 8: Dextreous skills learning via Large Behavioral Models (LBMs) [TRI] (a) skill demonstration through
teleoperation (b) flip a pancake (c) use electric hand mixer (d) spread nutella on bread (e) so far (09/2024) 60
new behaviors
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