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Abstract

The advances in the field of Artificial Intelligence (Al) in less than 70 yrs after the Darmouth
first U.S. "workshop” on Artificial Intelligence [2, 3] in 1956 organized by J. McCarthy have been
substantial. To that point, A.M. Turing had already defined his "imitation game” [4], now known
as the Turing test, initially considering the question: "Can machines think?”. If a machine, e.g., a
computer can win that game, it can be called intelligent, so his key idea. It replaced the original
question by the question of whether a machine can act indistinguishably from the way a human acts.
In other words, whether a human and an intelligent machine act in the same way while playing that
game. A type of reverse test is the popular, current captcha test to determine whether an online user
is really a human or a machine (bot).

For all understanding of the early beginning’s efforts, those formal definitions of intelligence
were/are fully insufficient even compared to any layman’s understanding of the word intelligence.
Basic understanding could even lead immediately to the clear answer to long-standing questions
whether at least some animals are intelligent since computers cannot see "so well” (even in the
meantime) while those animals can, etc. I was delighted to conceive, design and deliver the first
operational, mission-critical, real-time, parallel distributed supercomputer capable of performing
robotic vision and control in history as an integral system operated even fully robotic-autonomously
(100%) in a flown NASA/ESA/DLR Spaceshuttle/Spacelab mission [5], see Figure 1. According
to J.W. Freeman’s life-time modeling research of the biological cortex: "The (David’s) associated
areas of scientific research have formed the baseline within brain research towards a more complete
understanding of the operation of biological brains including the human one” [6].

On the other hand, multiple ambitious predictions about Al performance could not fulfill expecta-
tions, so, e.g., M. Minsky’s in November 1970 according to Life magazine, not a scientific publication,
but still: ”In from three to eight years we will have a machine with the general intelligence of an av-
erage human being. I mean a machine that will be able to read Shakespeare, grease a car, play
office politics, tell a joke, have a fight. At that point the machine will begin to educate itself with
fantastic speed. In a few months it will be at genius level and a few months after that its powers will
be incalculable.” [7]. M. Minsky and S. Papert had previously published "The Perceptrons: An In-
troduction to Computational Geometry” with the main subject being the perceptron, a type of basic
artificial neural network, acknowledging its strengths, but also its limitations, which caused at least
partly a redirection of research. Today, more than a half a century after those predictions, nothing
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Figure 1: NASA STS-55 Spacelab Mission — First space operational computer, robot vision system,
teleoperated, shared-controlled, and fully autonomous. [13]

Figure 2: DoD advanced avionics with intelligent built-in sensor system — Mission-critical use of
neurochips integrated with CPUs, DSPs, GPS/INS among others.

the like has been achieved. It is certain that the complexity of the essence and details of intelligent
computation has been by far continuously underestimated.

After being heavily involved in "Al for VLSI”, i.e., I designed, coded, and deployed an Al-tool at the
Karlsruhe Institute of Technology (KIT) to design ASICs which we then used at Siemens AG to build
custom processors for automation, I founded with around 15 experts a committee on "VLSI for AI”
in 1985 in Berlin, Germany. I have been committed to advancing Al and ML since the early 1980’s
including pioneering breakthrough applications, industrial and in research [9], advanced learning /
training methods [10] as well as the early use of neurochips, cf. Figure 2, and advanced development
environments [11]. Recent advances in machine learning have been reported in [12], with topic
intersection in research and applications using big data DevSecOps in [13], in computational data
science [14], and key government regulatory issues of Al technology in [15] providing some insight
into Al supercomputers for the Gen Al era. The provided citations exemplify relevant developments
and are by no means meant to be exhaustive.

Figure 3 relates in (a) underlying Gen Al disciplines to one another including Artificial Intelli-
gence (Al), Machine Learning (ML), Deep Learning (DL), Generative Al (Gen Al), and Large Language
Models (LLMs), shows in (b) deep learning model types: discriminative and generative, and in (c)
that Generative Al and Large Language Models are forms of deep learning. Discriminative DL mod-
els are used to classify or predict and are typically trained on datasets of labeled data (supervised
learning). Generative DL models generate new data similar to the data they were trained on. From a
machine learning (ML) perspective called deep learning (DL), knowledge is gathered from experience
(data) without human intervention and represented by a hierarchy of concepts, which internally,
i.e., in the machine, is structured via a hierarchy graph composed of a number of layers deep. For
a broad range of basic deep learning topics consult, e.g., [16]. The deep learning technological and
scientific impact has been addressed, e.g., in [17]. Some key mathematical foundations of machine
learning and central machine learning problems can be found, e.g., in [18]. Some basic applica-
tions and associated statistical learning techniques including classification, regression, resampling,
model selection, tree-based methods, survival analysis, and multiple testing can be found, e.g.,
in [19]. Introductory topics of GenAl and LLMs have been or are being prepared, e.g., in [20] and
in [21] from a business perspectve, just to mention a few of a vast list of publications about this
relatively new subject. LLM topics like an introduction to Large Language Models (LLMs) including
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Figure 3: Artificial Intelligence (Al), Machine Learning (ML), Deep Learning (DL), Generative Al (Gen
Al), Large Language Model (LLM): (a) Gen Al related disciplines, (b) DL model types, (c) Gen Al and
LLMs are forms of DL [CMU, Google]
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Figure 4: Convolutional Neural Network (CNN) example [24]: (a) VGG-16 architecture with 16
layers, ReLU, Softmax (b) Max-Pooling
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an overview of LLMs, semantic search with LLMs, prompt engineering first steps; getting the most
out of LLMs including optimizing LLMs with customized fine-tuning, advanced prompt engineering,
customizing embeddings and model architectures; and advanced LLM usage: beyond foundation
models, open-source LLM fine-tuning, moving LLMs into production are presented, e.g., in [22].

In computer vision, a frequent way to extract features from images is by using convolution oper-
ators. In machine learning, an appealing way to perform image classification is by using Convolu-
tional Neural Networks (CNNs) [23], typically composed of an upstream feature extractor followed by
a downstream classifier. As an example, in [24] simple Convolutional Neural Network models were
presented with 16 and 19 layers depth by the Oxford’s Visual Geometry Group (VGG), in particular
with greater depth than with AlexNet [25]. Other deep CNN architectures can be found, e.g., in [12].
Figure 4 shows the VGG-16 network with 16 layers including built-in functions and operations uti-
lized in the architecture: ReLU, Max-Pooling, Softmax. The depth of Deep Neural Networks (DNNs),
and in particular of Convolutional Neural Networks (CNNs) accounts for the higher accuracy of the
results obtained and a hierarchical and modular representation within the architecture with sub-
sequently higher levels of abstraction, in the case of image classification going from a layer of pixels
to a layer of objects going through layers of edges among others.
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Figure 5: Recurrent Neural Network (RNN) to process sequential data {time series, natural
language} [Stanford]
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Figure 6: Transformer network architecture based solely on attention mechanisms [29]

Figure 5 shows in (a) the traditional recurrent neural network (RNN) architecture with hidden
states, which allows past outputs to be used as inputs and the processing of sequential data like
time series and natural language, its activation «<*> and output y<*> for t, the timestep, and input
2<'>; and in (b) the temporarily shared coefficients W, Wy, Wya, ba, by and the activation functions g;
and go. The gradient-based training technique for recurrent networks Backpropagation through time
(BPTT) was introduced in [26]. Generalized BPTT training methods for recurrent neural networks
are presented, e.g., in [27], whose local optima issues are more challenging than with feed-forward
neural networks. Another sequence learning method that addresses the RNN’s vanishing gradient
issue can be found, e.g., in [28], called the Long Short-Term Memory (LSTM).

A self-attention-based sequence transduction model called Transformer was introduced in [29].
The underlying attention mechanism relates positions of a single sequence to compute the sequence
representation, without using neither Recurrent Neural Networks (RNNs) nor Convolutional Neural
Networks (CNNs) to connect the encoder and decoder parts, and allowing for a higher degree of
paralellizable computation. An attention function is a mapping of a query and a set of key-value pairs
to an output, where each of these terms are vector-valued. The weighted values sum is assigned
to the output whereas a weight is determined using a compatibility function of the query with the
corresponding key. Figure 6 shows in (a) the transformer model architecture and in (b) the scaled
dot-product and in (c) the multi-head attention functions. With the multi-head attention function,
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Figure 7: (a) Generative Al Supercomputer [Nvidia] [15] (b) Model Parameter Size [33]

the transformer model can jointly attend to information from different representation subspaces at
different positions.

This basic architecture led to the development of complex LLMs all the way to OpenAl’'s fourth
generation of GPT (Generative Pre-trained Transformer) foundation models. GPT-4, for example, is
a multi-modal (text, image) LLM made publicly available via ChatGPT Plus and OpenAlI's API [30].
The pre-trained model uses public and third-party providers’ licensed data, which is then fine-tuned
using reinforcement learning feedback from humans (RLFH) and Al for human alignment and policy
compliance. Rising capabilities and implications of an early version of the GPT-4 model are dis-
cussed, e.g., in [31], providing a phenomenological study over a range of tasks and domains given
a loose understanding of reasoning, planning, and learning from experience as well as highlighting
the remarkable capabilities and challenges of GPT-4. Some of the current Al technology develop-
ments with major impact obviously include the deployment of next generation hardware too, e.g.,
the Nvidia’s DGX GH200, an Al supercomputer for the Generative Al era [32, 15]. Al hardware has
substantially accounted for the increase in the size of the Gen Al models, i.e., the number of model
parameters, see, e.g., [33]. Figure 7 shows in (a) the DGX GH200 Gen Al supercomputer and in (b)
the increase in foundation model parameter number up to 1.7 trillion for GPT-4.

Multiple areas of research and improvement include, e.g., the fine-tuning of large language models
in practice by training only a small set of parameters. That small set could be either a subset of the
current parameters or a set of new parameters not present inside the model yet. A parameter-
efficient fine-tuning (PEFT) method taxonomy is presented, e.g., in [34]. Zero-shot, one-shot, and
few-shot learning are used when feasible and the availability of training data is insufficient. Max-
likelihod-trained LLMs appear to perform surprisingly well for diverse tasks in a zero-shot setting and
without supervision when trained using a sufficiently varied text corpus [35]. An approach to multi-
tasking model development without negative interference is making use of modular deep learning,
see, e.g., [36]. Tools have evolved since the Eliza program developed by J. Weizenbaum made some
basic natural language conversation between human and machine possible [37]. Figure 8 shows in
(a) the landscape of some of the key Generative Al tools today including AlphaCode, Bard, ChatGPT,
Claude, Cohere Generate, Dall-E2, Duet Al, GitHub Copilot, GPT-4, Scribe, and Synthesia, in (b)
as an example of a Gen Al tool, how Google’s Bard operates and in (c) as another example of a
Gen Al tool, the way how to send an Open Al API request using the custom Python library provided
after the API key has been set up. Open Al's GPT-4 can be seen in brief as a multimodal (text,
image) Gen Al tool for content creation, answering relatively complex questions, and could be used
in marketing applications among others; Google’s Bard as a conversational Gen Al tool to brainstorm
ideas, spark creativity, and accelerate productivity, which could be used for dialog-based applications
and customer service. Figure 9 (a) shows the Bard’s response to a mathematical task, i.e., when
entering the prompt: "Suppose g(x) =f "{-1}(x); g(0) = 5; g(4) = 7; g(3) = 2; g(7) = 9; g(9) = 6 what
is f(f(f(6)))?”. Bard solves this task correctly in three steps: (1) f(6) = 9, (2) f(f(6)) = f(9) = 7, and
finally (3) f(f(f(6))) = f(f(9)) = {(7) = 4. Btw., the result is the same as with GPT-4 and the "reasoning”
displayed pretty similar. Figure 9 (b) shows the Bard’s response to a coding task, i.e., when entering
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Figure 9: Bard generated responses: (a) mathematical task, (b) coding task.

the prompt: "What is the Python code for a function that adds two integer values ?”. The result
provided by Bard includes a usage example of the Python code generated.

Figure 10 (a) shows the image produced by LaTeX compiling after GPT-4 processes the prompt:
"Draw a unicorn in TiKZ”. The TikZ package is a complex and powerful tool to create graphic ele-
ments in LaTeX, producing vector graphics, e.g., technical illustrations and drawings, from a geo-
metric/algebraic description. Figure 10 (b) displays the three versions of the GPT-4 results showing
an increased degree of the drawings’ sophistication after being queried three(3) times subsequently
within approximately one month while the system was being refined. Figure 10 (c¢) shows on the
left the famous oil on canvas called "Komposition 8” by Wassily Kandinsky, credited to be one of
the pioneers of abstraction in western art and on the right the image produced by the code that
was generated entering the prompt: "Produce javascript code which generates random images in the
style of the painter Kandinsky”.

The transformative effect of these pre-trained, self-supervised foundation models called Large
Language Models (LLMs) in natural language processing (NLP) using current Generative Artificial
Intelligence (Gen Al) tools has been remarkable, mainly due to its potential adaptability via fine-
tuning to a broad range of tasks. These advances have led to a relatively vast and fast US government
initial reaction as the following examples show. The U.S. Department of Defense (DoD) has released
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a strategy that guides the strengthening of the organizational environment in which the DoD deploys
data, analytics, and Al capabilities for enduring decision advantage [38] based on lessons learned
while integrating analytics and Al applications and first-hand learning about their current benefits
and limitations. The White House released at the end of October 2023 an executive order on the safe,
secure, and trustworthy development and use of Artificial Intelligence [39, 40]. W.r.t. the federal
use of Al, it acknowledges the ubiquity of Gen Al tools, and directs agencies to provide access with
safeguards in place. Some of the key Al-related activities of the U.S. Congress (Senate & House) have
been summarized in [15, 41]. To support Al and national security the Special Competitive Studies
Project (SCSP) was formed in October 2021 composed of six panels with the following objectives:
foreign policy, intelligence, defense, economy, society, and future tech platforms. In particular, with
emphasis on Gen Al [42]. The entire area of generative Artificial Intelligence (Gen Al) and Large
Language Models (LLMs) is reviewed and benchmarked in detail providing relevant topics of current
research, advanced development tools, stacks and use cases as well as risk assessments while
incorporating the associated technologies into vertical applications in multiple areas of science,
industrial, and government application.
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