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Zusammenfassung
Mit Hilfe von ungelösten und gelösten Problemen der reinen und der angewandten Mathematik,
z.B. jeweils der abstrakten Algebra und der numerischen Optimierung, wird der Einsatz von Metho-
den der Künstlichen Intelligenz und des Maschinellen Lernens (KI/ML) in der Mathematik grundle-
gend untersucht. Die kombinatorische Gruppentheorie wurde zu Beginn des 20. Jahrhunderts mit
den grundlegenden Arbeiten von Max Dehn [4] entscheidend geprägt, einschl. die drei Dehnschen
Probleme: das Wortproblem, das Konjugationsproblem und das Isomorphieproblem, die alle nur
semi-entscheidbar und im Allgemeinen algorithmisch unlösbar sind. Er löste auch als erster eines,
das dritte, von Hilberts 23 mathematischen Problemen. In den frühen 1880er Jahren hatte bereits
Walther von Dyck [5] die Grundlagen eingeführt indem er als erster, Gruppen anhand von Erzeugern
und Relationen systematisch analysierte. Eine einführende Behandlung über die Geometrie infiniter
Gruppen kann z.B. in [6] nachgeschlagen werden. Die Theorie der Gruppenpräsentationen und der
kombinatorischen Gruppentheorie werden jeweils in [7] und [8] behandelt. Gruppenpräsentationen
anhand von Erzeugern und Relationen werden in [9] ausführlich beschrieben. Die Literaturhinweise
sind nur exemplarisch und keineswegs erschöpfend. Abbildung 1(a), (b) und (c) zeigen jeweils die
Definitionen von Gruppe, Erzeugern und Cayley-Graph.

In der Gruppentheorie, erlauben freie Gruppen, jede Gruppe durch Erzeuger und Relationen
darzustellen. In der algebraischen Topologie treten sie als Fundamentalgruppe von Graphen. Eine
Gruppe G heißt frei, wenn sie eine Teilmenge S enthält, sodass jedes Gruppenelement g ∈ G auf
genau eine Weise als reduziertes Wort von Elementen in S und deren Inversen geschrieben werden
kann. Abbildung 2(a) zeigt die geometrische Definition einer freien Gruppe. Abbildung 2(b) zeigt die
Worte, reduzierte Worte und die Menge der äquivalenten Worte. Schließlich, Abbildung 2(c) zeigt die
Menge der äquivalenten Worte mit der Konkatenation als freie Gruppe. Der topologische Begriff des
Geschlechts (g) einer kompakten orientierbaren Fläche ist eine ganze Zahl und gibt die maxima-
le Anzahl von möglichen Schnitten entlang disjunkter, einfach geschlossener Kurven, so dass die

∗Diese Zusammenfassung wurde zur Veröffentlichung freigegeben. Der Verfasser ist weltweit der jüngste Wissenschaft-
ler, der mit dem IEEE Fellow Prize (”Nobelpreis“ für Ingenieurwissenschaften) ausgezeichnet wurde [1] mit der Erwähnung

”für Führung auf dem Gebiet der neuronalen und parallelen Rechenmethoden und bahnbrechende Beiträge zu autonomen
Weltraumrobotern“. Er gründete und leitete als Chefwissenschaftler, EiC 15 Jahre lang, eine wissenschaftliche Zeitschrift
zu KI/ML, die von Elsevier Science herausgegeben wurde [2]. Als zehnjähriger Wissenschaftsmitarbeiter der Bundesre-
gierung beim Deutschen Zentrum für Luft- und Raumfahrt (DLR) startete er 1988 mit dem Büro des Bundesministers für
Forschung und Technologie das erste Bundesprogramm für KI/ML-Forschung und Technologieentwicklung in Deutsch-
land [3], das sich mit seinem Konsortium, zu dem DLR und Siemens Zentral-FuE in München, Deutschland, gehörten,
auf Lernrobotik und Automatisierung konzentrierte. Er hat mehrfach weltweit als erster hochkomplexe Probleme der Ma-
thematik, u.a. der abstrakten Algebra und der multivariaten Approximationstheorie mittels Künstliche Intelligenz und
Maschinelles Lernen gelöst. Die Ergebnisse wurden dann z.T. im Anwendungsbereich der Halbleitertechnologie, der Ro-
botik und der Raumfahrt erfolgreich eingesetzt, so z.B. in einem geheimen Programm des U.S. Verteidigungsministeriums
mit Unterauftragnehmern Lockheed Martin und SAIC unter dem Einsatz von Neurochips. Zuletzt hat er der NASA Jet
Propulsion Laboratory (JPL) und den Weltraumstreitkräften der Vereinigten Staaten (auf Englisch: United States Space
Force) in Kalifornien unterstützt, keine sicherheitsvertrauten Details sind hier enthalten.
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Abbildung 1: Gruppentheorie [10] (a) Gruppe (b) Erzeuger (c) Cayley-Graph

Abbildung 2: Freie Gruppen [10] und Henkelkörper (a) Freie Gruppe – geometrische Definition (b) Wortraum
(c) Die Menge der äquivalenten Worte mit der Konkatenation als freie Gruppe (d) Flächengeschlecht g=1: von
Donut zu Kaffetasse (e) Henkelkörper vom Geschlecht g: Kugel (g=0), Torus (g=1), Doppeltorus (g=2)), Brezel

(g=3)

Fläche nach dem Schnittvorgang immer noch zusammenhängend ist. Umgangssprachlich, gibt das
Geschlecht einer Fläche die Anzahl der Löcher oder der Henkel der Fläche an. Deshalb haben beide,
eine Kaffeetasse und ein Donut, dasselbe Geschlecht g=1, vgl. Abbildung 2(d). Weitere Beispiele fol-
gen in Abbildung 2(e). Die Henkelzerlegung bildet in der Differentialtopologie die Grundlage für die
Klassifikation und Beschreibung von Mannigfaltigkeiten.

Im Bereich der Booleschen Algebra, bei der Minimierung Boolescher Funktionen, wurde das Qui-
ne–McCluskey Verfahren, das von Willard V. Quine in [11] entwickelt und von Edward J. McCluskey
Jr. in [12] erweitert wurde, durch die Einführung von Heuristiken erfolgreich übertroffen, so z.B.
durch die Algorithmen in [13], die wesentlich effizienter sind und den Speicherbedarf sowie die Re-
chenzeit um mehrere Größenordnungen reduzieren, womit ein wichtiger Fortschritt in der automa-
tischen Logiksynthese erzielt wurde. Das globale Minimum wird dabei lediglich approximiert, läßt
sich nicht garantieren, hat sich aber in der Praxis als eine gute Approximation bewährt. Die hard-
waretechnische Realisierung der dazugehörigen digitalen Schaltung wird nach der Minimierung der
Booleschen Funktion f : {0, 1}n → {0, 1} einfacher und daher kostengünstiger. Das Quine–McCluskey
Verfahren geht von der Funktionsdarstellung in kanonischer disjunktiver Normalform (KDNF) aus.
Wenn man z.B. die Boolesche Funktion (n = 3) : f(a, b, c) = abc + ab̄c + ābc + ābc̄ + āb̄c mit dem Qui-
ne–McCluskey Verfahren minimiert, erhält man f(a, b, c) = āb + c. Abbildung 3(a) zeigt für die o.g.
Beispielsfunktion das Quine–McCluskey Verfahren mit dem Hasse-Diagramm des Suchgraphen.
Abbildung 3(b) zeigt die Minimierung eines Beispiels mit einer Booleschen Funktion f(a, b, c) aus-
gehend aus ihrer Wahrheitstabelle mit Don’t Cares (’d’ statt ’0’ oder ’1’). Die Gütehierarchie der
Überdeckungen der zu minimierenden Funktion wird auch unten gezeigt: von nicht-Prim-, Prim-,
irredundante und minimale Überdeckung(en). Ein Primterm oder Primimplikant ist ein Implikant
minimaler Länge, der also durch weiteres Vereinfachen oder Weglassen von Variablen kein Implikant
mehr wäre. Ein Kernprimterm oder Kernprimimplikant ist ein Primterm, die Minterme enthält, die
in keinem anderen Primterm vorkommen. Er muß in jeder minimalen disjunktiven Normalform
vorkommen. Das Quine–McCluskey Verfahren bestimmt das Minimum als eine Überdeckung be-
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Abbildung 3: Logische Minimierung Boolescher Funktionen (a) Quine–McCluskey Verfahren – Beispiel –
Hasse-Diagramm des Suchgraphen (b) Wahrheitstabelle mit Don’t Cares (’d’ statt ’0’ oder ’1’) der Booleschen

Funktion f(a, b, c) [CMU] (c) Überdeckungen der Booleschen Funktion f(a, b, c)

stehend aus Kernprimimplikanten in KDNF. Abbildung 3(c) zeigt verschiedene Überdeckungen der
Booleschen Funktion f(a, b, c). Oben links wenn Don’t-Care-Werte in ’1’-Werte überführt wurden:
f(0, 1, 1) = f(1, 0, 0) = 1. Oben rechts die Minimum-Überdeckung von f . Unten links eine redundan-
te Überdeckung. Schließlich, unten rechts eine minimale irredundante Überdeckung, aber nicht
das Minimum. Da bei der Minimierung Boolescher Funktionen das zugrunde liegende Problem NP-
vollständig ist, gibt es kein effizientes Verfahren. Die Rechenzeit wächst exponentiell mit der Anzahl
der Variablen n. Allein die Anzahl der Primimplikanten für eine Funktion mit n Variablen kann so
groß sein wie 3n√

n
[14]. Deshalb wurden KI-Heuristische Verfahren zur logischen Minimierung für

die VLSI-Synthese, so z.B. von mir am Karlsruher Institut für Technologie (KIT) [15] entwickelt. Die
Algorithmen waren im mathematischen Sinne beweisbar und ihre Implementierung basierte auf
rekursive Funktionen. Als ich zur Entwicklungsabteilung von Siemens AG Automatisierung wech-
selte, benutzten wir im Entwicklungsteam mein KI-für-VLSI-Programm, um ASICs als Bestandteile
von Spezialprozessoren zu entwerfen, die wir in der Gruppe entwickelt haben. Danach habe ich auch
das dazu passende Echtzeitbetriebssystem für Multiprozessorsysteme geschrieben. Anschließend,
in 1985, habe ich mit einer Gruppe von etwa 15 Technologen das deutsche VLSI-für-KI-Komitee in
Berlin gegründet, um auch die Entwicklung von KI-Chips voranzutreiben.

Im Bereich des Maschinellen Lernens hat man über die Jahre veschiedene Lernmethodentypen
eingesetzt. Zunächst, wurden überwachte Lernmethoden (auf Englisch: Supervised Learning me-
thods) eingesetzt, um Ausgangsdaten auf der Basis von vorher ungesehen Eingangsdaten zu gene-
rieren nachdem Trainings-Eingangs- und -Ausgangsdaten mit bekannten Bezeichnungen verwendet
wurden, um ein Ein-Ausgangs-Modell zu bilden. Unüberwachte Lernmethoden (auf Englisch: Un-
supervised Learning methods) halfen, Muster in Daten ohne bekannte Bezeichnungen aufzudecken.
Beide Lernmethodentypen, überwacht und unüberwacht, waren im Prinzip ungeeignet, Sequenzen
von Daten zu erlernen, und ihr Einsatz in Bereichen wie in der Robotik begrenzt [16]. Fokussierte
Erweiterungen der neuronalen Netzwerkarchitekturen habe ich dann eingeführt [17], so daß auch
Datensequenzen erlernt werden konnten. Sie basierten auf dem Konzept der Aufmerksamkeit (auf
Englisch: Attention). Eine Demonstration dieser Fähigkeit folgt. Abbildung 4(a) zeigt Attraktoren für
verschiedene Werte des Parameters τ der Mackey–Glass-Gleichungen [18], eine Familie von nichtli-
nearen Differentialgleichungen mit Zeitverzug. Das entspricht der Visualisierung von (P (t), P (t−τ)).
Sie werden wie folgt definiert (hier nur eine von zwei Gleichungen): dP (t)

dt = β0θnP (t−τ)
θn+P (t−τ)n − γP (t). Sie

werden zur Modellierung physiologischer Systeme eingesetzt und zählen zu einem der beliebtes-
ten Standard-Benchmark-Datensätze für solche Aufgaben, d.h. die Prädiktion komplexer Zeitrei-
hen. Abbildung 4(b) zeigt oben und in der Mitte jeweils eine gesunde (τ = 6) und eine patholo-
gische (τ = 20) Veränderung der Blutzelldichte. Ganz unten wird die Mackey–Glass-Zeitreihe und
ihre Parameterwerte gezeigt, die zum Bestätigen des erfolgreichen Aufmerksamkeitsmechanismus
in der neuronalen Netzwerkarchitektur verwendet wurden. Abbildung 4(c) zeigt jeweils oben und
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Abbildung 4: Zeitreihenanalyse – Aufmerksamkeit in neuronalen Netzwerkarchitekturen (a) Attraktoren der
Mackey–Glass-Gleichungen (b) Mackey–Glass-Zeitreihen (c) Ergebnisse – Erlernen von Datensequenzen mit
neuronalen Netzwerkarchitekturen mit Aufmerksamkeit [17] (d) Transformer-Aufmerksamkeit: das skalierte

Skalarprodukt (e) die Mehrkopf-Aufmerksamkeits-Funktion [19]

unten die Ergebnisse der neuronalen Netzwerkarchitektur mit jeweils 81 und 256 Neuronen in der
Zwischenschicht eines RBF-Netzwerkes ohne wesentliche Unterschiede. Abbildung 4(d) zeigt den
Aufmerksamkeitsmechanismus der Transformerarchitektur, der die Aufmerksamkeitsgewichte zwi-
schen verschiedenen Elementen in einer Sequenz bestimmt. Schließlich, Abbildung 4(e) zeigt die
Mehrkopf-Aufmerksamkeits-Funktion, die mehrere solche Berechnungen erlaubt, um gleichzeitig
verschiedene Aspekte der Daten zu berücksichitigen.

Bei bestärkenden Lernmethoden (auf Englisch: RL = Reinforcement Learning) [20] erkundet ein
Agent die Umgebung, um die optimale Strategie herauszufinden. Durch das Konzept der Markow-
Kette [21] wurde die Anwendung des Gesetzes der großen Zahlen von Folgen unabhängiger Zufalls-
variablen von Andrei A. Markow auf Folgen abhängiger Zufallsvariablen erweitert, die die Markow-
Eigenschaft genügen, eine gedächtnislose Eigenschaft eines stochastischen Prozesses, nach der nur
der gegenwärtige Zustand die Wahrscheinlichkeitsverteilung zukünftiger Zustände beeinflusst. Bei
Systemmodellierungen eignen sich Markow-Ketten, um zufällige Zustandsänderungen eines Sys-
tems zu modellieren. Wenn man eine Markow-Kette um einen Agenten erweitert, der sich zwi-
schen mehreren möglichen Aktionen entscheiden kann und positive oder negative Belohnungen als
Rückmeldung erhält, dann hat man einen Markow-Entscheidungsprozess. Abbildung 5(a) zeigt die
Definition einer Markow-Kette mithilfe der Markow-Eigenschaft. Abbildung 5(b) zeigt die Definition
eines Markow-Entscheidungsprozesses und das Ziel des Agenten, der seine Aktionen mit Hilfe einer
Strategie π auswählt. Abbildung 5(c) zeigt ein inverses Pendel montiert auf einem Wagen als Beispiel
für einen Markow-Entscheidungsprozess. Ein Markow-Entscheidungsprozess (MEP) [22] ist ein Tu-
pel (S,A,R, P, ρ) wo S,A der Zustandsraum und die Aktionsmenge jeweils sind. R : S × A × S → R
ist die Belohnungsfunktion die jeder Transition von einem Zustand zum Folgezustand durch eine
spezifische Aktion eine reellwertige Belohnung zuordnet. P : S × A → P (s1|s0a0) ist die Transitions-
wahrscheinlichkeitsfunktion. Schließlich, ρ(s) → [0, 1] ist die Startzustandswahrscheinlichkeitsver-
teilung, die die Wahrscheinlichkeit eines Systemstarts in einem gewissen Zustand beschreibt. Das
System startet im Zustand s0 mit Wahrscheinlichkeit ρ(s) und führt eine Aktion a0 aus, das System
erreicht dann den Folgezustand s1 mit Wahrscheinlichkeit P (s1|s0a0). Diese Transition vom Zustand
s0 zum Folgezustand s1 erhält die Belohnung r0 = R(s0, a0, s1), die die Wirksamkeit der Aktion im
Hinblick auf ihren Beitrag zum Gelangen des Gesamtziels quantifiziert. Die Reihenfolge wiederholt
sich vom Zustand s1 aus und nachfolgend wird die Trajektorie τ = {s0, a0, s1; a1, . . .} generiert. Das
Ziel des Gesamtprozesses ist den Gesamtertrag R(τ) =

∑τ
t=0 γ

tR(st, at, st+1) zu maximieren, mit T die
Trajektorienlänge, auch Horizontlänge genannt, und γ ∈ [0, 1] der Diskontierungsfaktor, der Beloh-
nungen gewichtet, die kurzfristig erfolgen, höher als solche, die später erfolgen. Ein MEP, bei dem
die Anzahl von Zuständen und Aktionen endlich ist und alle Transaktionswahrscheinlichkeiten und
Belohnungen bekannt sind, kann mit Hilfe der dynamischen Programmierung [23] iterativ gelöst
werden. Das Modell des inversen Pendels montiert auf einem Wagen ist ein Beispiel für einen MEP.
Der Zustandsraum kann aus der Horizontallage des Wagens x und dem Winkel θ zwischen dem
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Abbildung 5: (a) Markow-Kette (auf Englisch: Markov Chain (MC)) [MIT] (b) Markow-Entscheidungsprozess
(auf Englisch: Markov Decision Process (MDP)) [UCB] (c) Beispiel: das inverse Pendel montiert auf einem

Wagen

Pendel und der Vertikalachse bestehen oder aber aus dem Winkel θ und der Winkelgeschwindigkeit
θ̇. Der Aktionsraum besteht typischerweise aus der Kraft F⃗ mit der der Wagen balanciert wird oder
aus einem entsprechenden Drehmoment M⃗ . Die zu definierende Belohnungsfunktion R bietet einen
Anreiz dafür, daß das Pendel in die aufrechte Position schwingt, möglicherweise auch mit Strafen
für übermäßigen Kontrollaufwand. Die Transitionswahrscheinlichkeitsfunktion P wird mithilfe der
Pendelsystemdynamik bestimmt. Auf dieser Grundlage können dann optimale Kontrollstrategien
mittels z.B. bestärkende Lernmethoden errechnet werden.

Bei bestärkenden Lernmethoden alternieren sie zwischen dem Sammeln von Daten durch In-
teraktion mit der Umgebung und der Optimierung einer Ersatzzielfunktion. Strategiegradientenme-
thoden (auf Englisch: Policy Gradient (PG) methods) optimieren die Zielverlustfunktion LPG(θ) =

Êt

[
log πθ(at|st)Ât

]
. Êt gibt empirisch den Durchschnitt einer begrenzten Anzahl von Daten an, πθ

ist eine stochastische Strategie und Ât ist eine Schätzung der Vorteilsfunktion zum Zeitpunkt t,
die den relativen Nutzen der Durchführung von der Aktion a im Zustand s unter der Strategie π
quantifiziert. Ein Nachteil dieser Methoden ist die kontraproduktive Generierung von großen Stra-
tegieaktualisierungen. Bei der Lernmethode Strategieoptimierung der Vertrauensregion (auf Eng-
lisch: TRPO = Trust Region Policy Optimization) wird folgendes uneingeschränktes Optimierungs-
problem gelöst: maxθ Êt

[
rt(θ)Ât − β ·KL[πθold(·|st), πθ(·|st)]

]
, dabei stellt rt(θ) = πθ(at|st)

πθold
(at|st) ein Strategie-

verhältnis dar, β ist ein einstellbarer Hyperparameter und die Kullback-Leibler(KL)-Divergenz [24]
ist ein Maß für die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen, die numerisch be-
rechnet werden muß. Eine Verbesserung dieser Lernmethode wurde durch die Lernmethode pro-
ximale Strategieoptimierung (auf Englisch: PPO = Proximal Policy Optimization) [25] eingeführt,
die die Stabilität und Zuverlässigkeit beibehält, aber einfacher zu implementieren ist, denn sie oh-
ne relativ komplexe KL-Divergenz-Berechnungen auskommt. Die PPO Lernmethode verbessert die
Trainingsstabilität des Agenten, indem zu große Strategieaktualisierungen vermieden werden. Die
PPO-Zielfunktion lautet: Lt(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)

]
, c1, c2 sind einstellbare Hyper-

parameter. Um die Aktualisierungen auf einen vordefinierten Bereich zu beschränken verwendet
man LCLIP

t (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. LV F

t ist der mittlere quadratische Verlust

(Vθ(st)−V targ
t ))2. Um die Erkundung des Aktionsraums zu fördern addiert man einen Entropie-Bonus

S[πθ](st).
So wie wir bereits einen Fall in der Booleschen Algebra besprochen haben wo durch KI-Heuristiken

Lösungen ermöglicht wurden, besprechen wir zunächst noch einen Fall in der abstrakten Algebra
wo neue Erkenntnisse zu einem noch nicht bewiesenen Problem mittels maschinellen Lernens ge-
wonnen werden konnten. Auf dem Gebiet der kombinatorischen Gruppentheorie gibt es wie sonst
in der Mathematik eine Fülle von ungelösten Problemen, so wurde z.B. die noch nicht bewiese-
ne Andrews–Curtis(AC)-Vermutung in ihrem Beitrag über freie Gruppen und Henkelkörper ein-
geführt [26]. Eine ausgewogene Präsentation ist eine Präsentation mit derselben Anzahl n an Er-
zeuger und Relationen: P = ⟨x1, · · · , xn|r1, · · · , rn⟩. Die Andrews–Curtis-Vermutung lautet: irgendeine
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Abbildung 6: Untersuchung der Andrews–Curtis(AC)-Vermutung [28] (a) Zyklus der bestärkenden
Lernmethode (b) Erweiterung mit adaptivem Aktionsraum (c) Adaptives Modelltrainieren und Wegfindung

ausgewogene Präsentation der Trivialgruppe ⟨x1, · · · , xn |r1, · · · , rn⟩ kann in die Trivialpräsentation
⟨x1, · · · , xn|x1, · · · , xn⟩ überführt werden durch eine endliche Folge von Elementartransformationen,
auch AC-Züge genannt, und wie folgt definiert: (1) einige ri durch rirj , i ̸= j zu ersetzen, (2) einige
ri mit r−1

i auszutauschen und (3) einige ri in grig
−1 zu überführen mit g ein Erzeuger oder seine

Inverse. Die Länge einer Präsentation errechnet sich als die Summe der Wortlängen von allen Rela-
tionen. Präsentationen die durch eine Folge von AC-Zügen ineinander transformiert werden können
nennt man AC-äquivalent. Eine Präsentation heißt AC-trivial wenn sie AC-äquivalent zu einer Tri-
vialpräsentation ist. Um eine bestimmte Präsentation auf Trivialität zu untersuchen kann man sys-
tematisch den gesamten Raum möglicher Sequenzen von AC-Zügen absuchen, bis eine Sequenz die
Präsentation trivial macht. Dieser Raum wächst aber exponentiell mit der Anzahl an Sequenzen.
Die Gesamtzahl der Sequenzen von AC-Zügen der Länge k für eine Präsentation mit n Erzeugern
ist (3n2)k, d.h. ein Brutalkraftansatz ist unpraktikabel. Präsentationen aus der infiniten Akbulut-
Kirby(AK)-Reihe [27] möglicher Gegenbeispiele: AK(n) = ⟨x, y|xn = yn+1, xyx = yxy⟩, n ≥ 2 sind über
die Jahre untersucht worden. AK(2) der Länge 11 ist AC-trivial. AK(3) der Länge 13 hat sich aber bis
dato nicht trivialisieren lassen. Das der Andrews-Curtis-Vermutung zugrundeliegende Problem kann
als Markow-Entscheidungsprozess (MEP) formuliert werden. Präsentationstrivialisierungen mithilfe
u.a. von bestärkenden Lernmethoden werden in [28] untersucht. Durchsuchen der Graphenknoten
erfolgt zunächst durch Breitensuche und einen Greedy-Suchalgorithmus, der die Zustände in ei-
ner Prioritätswarteschlange hält, deren Ordnung durch den Tupel (k, l) bestimmt wird, mit k und
l jeweils die Präsentationlänge und die Pfadlänge zwischen dem Zustand und dem Initialzustand.
Der Zustand mit dem kleinsten Wert von k wird gewählt. Wenn es mehr Zustände gibt, entschei-
det der kleinste Wert von l. Dann wird eine bestärkende Lernmethode, die proximale Strategieop-
timierung (auf Englisch: PPO = Proximal Policy Optimization), angewandt, um AC-Trivialisierungen
ausgewogener Präsentationen zu finden. Die Ergebnisse werden mit denen verglichen, die mithil-
fe der o.g. Suchalgorithmen bestimmt wurden. Tiefgreifende Eindrücke konnten gewonnen wer-
den, z.B. beim Testen der Ansatzwirksamkeit mithilfe von Präsentationen aus der Miller-Schupp-
Reihe [29] möglicher Gegenbeispiele: MS(n, ω) = ⟨x, y|x−1ynx = yn+1, x = ω⟩. So z.B. sind für n = 3
und ω1 = y−1x−1yxy die Präsentationen MS(n, ω1) der Länge 15 und AK(n) AC-äquivalent. Die PPO
Lernmethode wird eingesetzt, um die Strategiefunktion π zu ermitteln. Wenn aber die Horizontlänge
konstant gehalten wird, können komplexe Präsentationen entweder nicht gelöst werden, wenn die
Horizontlänge zu klein ist, oder erhebliche Rechenressourcen sind erforderlich, damit das Training
konvergiert, wenn die Horizontlänge zu groß ist. Deshalb wurde die Horizontlänge in den Experimen-
ten dann variable gehalten, mit Werten steigend von 200 auf 1200 für Umgebungsinteraktionen von
jeweils 10 auf 50 Mio. Der PPO-Agent konnte dann zunächst einfache Präsentationen lösen, um da-
nach mit erhöhter Fähigkeit komplexere Miller-Schupp-Präsentationen mit größer Horizontlänge zu
verarbeiten, einschließlich welche, die die Suchverfahren nicht imstande waren zu lösen. Es emp-
fiehlt sich also das Hinzufügen von zunehmend längeren Sequenzen elementarer AC-Zügen zum
Aktionsraum zu ermöglichen. Abbildung 6(a) zeigt den grundlegenden Zyklus der bestärkenden
Lernmethode. Abbildung 6(b) zeigt die Erweiterung des Modells mit einem adaptiven Aktionsraum.
Abbildung 6(c) zeigt einen Algorithmus zum adaptiven Modelltrainieren und Wegfindung.

Wie hier konkret gezeigt wurde, können manche Mathematik-Probleme eine geeignete Platform
darbieten, um selbstverbessernde KI/ML-Systeme auf dem Weg zur Künstlichen Generischen In-
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Abbildung 7: Künstliche Generische Intelligenz (auf Englisch: Artificial Generic Intelligence (AGI) – Robotisch
autonomes Greifen einer generischen Kugel [17]

telligenz (auf Englisch: Artificial Generic Intelligence AGI) zu untersuchen und weiterzuentwickeln,
nachdem Große Sprachmodelle (auf Englisch: Large Language Models LLMs) [30] sich mit beinahe
menschlicher Kompetenz unterhalten können, die neuesten Modelle schließen u.a. OpenAI GPT4.5
und o3-mini [31] sowie DeepSeek V3 and R1 [32] ein. Grundlagen der LLM Theorie und Praxis
können z.B. in [33] nachgeschlagen werden. Wenn wir über die Sprache hinaus zum Verhalten
übergehen, d. h. wenn wir KI/ML-Systeme einschließlich intelligente, autonome, lernende Robo-
tersysteme der nächsten Generation [34] entwickeln, dann benötigen wir Große Verhaltenmodel-
le (auf Englisch: Large Behavior Models LBMs) oder verwandte, die aus Expertendemonstrationen
vielfältige Aufgaben einschließlich Handlungsmuster und kontext-sensitive Interaktionen lernen. Sie
bieten in der Regel erweiterte RL-Fähigkeiten in entsprechenden Anwendungen, insbesondere mit
Rückkopplung aus der realen Welt, aber nicht nur. Der Stand der Technik im Bereich der Künstlichen
Generischen Intelligenz und der Künstlichen Super Intelligenz (auf Englisch: Artificial Super Intel-
ligence ASI) wurde in [35] kritisch betrachtet, mit einer nüchternen Sichtweise, welche intelligente
Maschinen mit menschenähnlichem Verhalten oder sogar übermenschlichen Fähigkeiten entwickelt
worden sind oder derzeit auf dem Weg sind. Abbildung 7 zeigt noch ein Beispiel im Bereich der
multivariaten Approximationstheorie, einem Bestandteil der Funtionalanalysis in der Mathematik,
und dann im Bereich Robotik eingesetzt, wie Lernmethoden und Systeme der Künstlichen Gene-
rischen Intelligenz entwickelt werden können. Abbildung 7(I) zeigt die idealisierte Umgebung: ein
Roboterdreifingergreifer mit 4 Entfernungsmessern und die zu greifende generische Kugel. Abbil-
dung 7(II) zeigt verschiedene Situationen wie die Entfernungsmessungen von der Kugeloberfläche
vorkommen können, Vorder- und Seitenansichten werden angezeigt. Abbildung 7(III) zeigt links die
multivariate Funktion (x, y, z, r) = f⃗(z1, z2, z3, z4), die mittels ein selbstentwerfendes neuronales Netz-
werk approximiert wurde und rechts die Trainings- und Testdatengenerierung, die mittels einer
geeigneten Simulationsumgebung realisiert wurde. Der Ansatz kann auf andere zu greifende Körper
angewandt werden. Das Generalisieren des Generalisierens auf irgendwelche zu greifenden Objekte
erfordert z.T. das Umgebungsurkunden und adaptive Lernmethoden wie hier z.T. skizziert. Während
Schachspielpartien nur ein paar Dutzend Züge dauern, die KI-Systeme bereits beherrschen, erfor-
dern komplexe Lösungen für viele mathematische Probleme je nach Komplexität Millionen, Milliar-
den oder sogar mehr Schritte. Erste KI/ML-Systeme, die dabei behilflich sein können, befinden sich
bereits in der FuE, die insbesondere lange, schwer zu findende Schrittfolgen entdecken, d.h. die
Ausreißer in der statistischen Verteilung der Lösungen, analog zum automatischen Entdecken von
Ausreißern [36] in zur Verfügung gestellten Daten beim völlig automatischen Entwerfen von neu-
ronalen Netzwerkarchitekturen und deren Training durch assoziierte Lernmethoden [17]. Im Kern
basieren viele der KI/ML-Lösungsmethoden auf Suchstrategien und liefern je bessere Lösungen de-
sto bessere Suchstrategien sie beinhalten, wie z.B. in [37] eindeutig beschrieben. In diesem Bericht
werden verschiedenartige Mathematikprobleme untersucht, wo der Einsatz von KI-ML-Methoden
vehemente Vorteile gegenüber dem Stand der Technik einführen, z.T. um ungelöste Probleme der
Mathematik herauszufordern und ggf. zu lösen. Zumindest einiger dieser Lösungen werden uns er-
lauben, weiterhin KI-ML-Systeme mit menschenähnlichem Verhalten oder sogar übermenschlichen
Fähigkeiten [38] zu entwickeln, wie der Verfasser seit Jahrzehnten meistert.
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