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Zusammenfassung

Mit Hilfe von ungelosten und geldsten Problemen der reinen und der angewandten Mathematik,
z.B. jeweils der abstrakten Algebra und der numerischen Optimierung, wird der Einsatz von Metho-
den der Kiunstlichen Intelligenz und des Maschinellen Lernens (KI/ML) in der Mathematik grundle-
gend untersucht. Die kombinatorische Gruppentheorie wurde zu Beginn des 20. Jahrhunderts mit
den grundlegenden Arbeiten von Max Dehn [4] entscheidend gepragt, einschl. die drei Dehnschen
Probleme: das Wortproblem, das Konjugationsproblem und das Isomorphieproblem, die alle nur
semi-entscheidbar und im Allgemeinen algorithmisch unlésbar sind. Er 16ste auch als erster eines,
das dritte, von Hilberts 23 mathematischen Problemen. In den frithen 1880er Jahren hatte bereits
Walther von Dyck [5] die Grundlagen eingefiihrt indem er als erster, Gruppen anhand von Erzeugern
und Relationen systematisch analysierte. Eine einfiihrende Behandlung tiber die Geometrie infiniter
Gruppen kann z.B. in [6] nachgeschlagen werden. Die Theorie der Gruppenprasentationen und der
kombinatorischen Gruppentheorie werden jeweils in [7] und [8] behandelt. Gruppenpriasentationen
anhand von Erzeugern und Relationen werden in [9] ausfiihrlich beschrieben. Die Literaturhinweise
sind nur exemplarisch und keineswegs erschopfend. Abbildung 1(a), (b) und (c) zeigen jeweils die
Definitionen von Gruppe, Erzeugern und Cayley-Graph.

In der Gruppentheorie, erlauben freie Gruppen, jede Gruppe durch Erzeuger und Relationen
darzustellen. In der algebraischen Topologie treten sie als Fundamentalgruppe von Graphen. Eine
Gruppe G heifdt frei, wenn sie eine Teilmenge S enthdlt, sodass jedes Gruppenelement g € G auf
genau eine Weise als reduziertes Wort von Elementen in S und deren Inversen geschrieben werden
kann. Abbildung 2(a) zeigt die geometrische Definition einer freien Gruppe. Abbildung 2(b) zeigt die
Worte, reduzierte Worte und die Menge der dquivalenten Worte. Schlieflich, Abbildung 2(c) zeigt die
Menge der dquivalenten Worte mit der Konkatenation als freie Gruppe. Der topologische Begriff des
Geschlechts (g) einer kompakten orientierbaren Flache ist eine ganze Zahl und gibt die maxima-
le Anzahl von moéglichen Schnitten entlang disjunkter, einfach geschlossener Kurven, so dass die
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Propulsion Laboratory (JPL) und den Weltraumstreitkraften der Vereinigten Staaten (auf Englisch: United States Space
Force) in Kalifornien unterstiitzt, keine sicherheitsvertrauten Details sind hier enthalten.



Definition of a Group

A group G is defined as a triple (G, x, (7)), where:
o G is a set;
o x:Gx G — G is a binary operation (multiplication);

Generators

Let G be a group and X' C G. The set A’ is said to be a generating
set of the group G

Cayley graph
Let G be a group and X’ be a generating set. Then the Cayley
graph Capley(G; X') is defined as follows:
- Vertices V = G
- An edge (a, b) € E exists iff 2. x = b for some x € X'. We will

G = (X}, sav that this edge is labelled bv x.

xeX

o =1 G 4 G is an unary operation (inversion).
if any element g € G can be represented as a finite product of
elements from A’ and their inverses:

Multiplication must satisfy the following axioms: R BT B

o Associativity: (a-b)-c=a-(b-c); Cayley graph for 7 — {2,3):

o Existence of an identity element e € G: g e G, Ay, x e YUAXL, such that g = xixz - xy. 4 2 0 2 4 6
: o o -’ -
e.g=g-e=g, YEEG; A finite sequence of elements from the set X' LY 1 is called a T By B R BETR
. . word and denoted by w:

o Existence of an inverse element for each g £ G:

R (X)) = wlx, x, ... xn). e b S
e w (3, x2 ) 3 a S Ent e &

(a) b) ©

Abbildung 1: Gruppentheorie [10] (a) Gruppe (b) Erzeuger (c) Cayley-Graph
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Abbildung 2: Freie Gruppen [10] und Henkelkoérper (a) Freie Gruppe — geometrische Definition (b) Wortraum

(c) Die Menge der dquivalenten Worte mit der Konkatenation als freie Gruppe (d) Flachengeschlecht g=1: von

Donut zu Kaffetasse (e) Henkelkdrper vom Geschlecht g: Kugel (g=0), Torus (g=1), Doppeltorus (g=2)), Brezel
(g=3)

Flache nach dem Schnittvorgang immer noch zusammenhangend ist. Umgangssprachlich, gibt das
Geschlecht einer Flache die Anzahl der Locher oder der Henkel der Fliache an. Deshalb haben beide,
eine Kaffeetasse und ein Donut, dasselbe Geschlecht g=1, vgl. Abbildung 2(d). Weitere Beispiele fol-
gen in Abbildung 2(e). Die Henkelzerlegung bildet in der Differentialtopologie die Grundlage fiir die
Klassifikation und Beschreibung von Mannigfaltigkeiten.

Im Bereich der Booleschen Algebra, bei der Minimierung Boolescher Funktionen, wurde das Qui-
ne-McCluskey Verfahren, das von Willard V. Quine in [11] entwickelt und von Edward J. McCluskey
Jr. in [12] erweitert wurde, durch die Einfihrung von Heuristiken erfolgreich tibertroffen, so z.B.
durch die Algorithmen in [13], die wesentlich effizienter sind und den Speicherbedarf sowie die Re-
chenzeit um mehrere Grofenordnungen reduzieren, womit ein wichtiger Fortschritt in der automa-
tischen Logiksynthese erzielt wurde. Das globale Minimum wird dabei lediglich approximiert, 143t
sich nicht garantieren, hat sich aber in der Praxis als eine gute Approximation bewahrt. Die hard-
waretechnische Realisierung der dazugehorigen digitalen Schaltung wird nach der Minimierung der
Booleschen Funktion f : {0,1}" — {0, 1} einfacher und daher kostengtinstiger. Das Quine-McCluskey
Verfahren geht von der Funktionsdarstellung in kanonischer disjunktiver Normalform (KDNF) aus.
Wenn man z.B. die Boolesche Funktion (n = 3) : f(a,b,c) = abc + abc + abc + abé + abc mit dem Qui-
ne-McCluskey Verfahren minimiert, erhalt man f(a,b,c) = ab + ¢. Abbildung 3(a) zeigt fur die o.g.
Beispielsfunktion das Quine-McCluskey Verfahren mit dem Hasse-Diagramm des Suchgraphen.
Abbildung 3(b) zeigt die Minimierung eines Beispiels mit einer Booleschen Funktion f(a,b,c) aus-
gehend aus ihrer Wahrheitstabelle mit Don’t Cares (d’ statt 'O’ oder '1’). Die Gttehierarchie der
Uberdeckungen der zu minimierenden Funktion wird auch unten gezeigt: von nicht-Prim-, Prim-,
irredundante und minimale Uberdeckung(en). Ein Primterm oder Primimplikant ist ein Implikant
minimaler Linge, der also durch weiteres Vereinfachen oder Weglassen von Variablen kein Implikant
mehr ware. Ein Kernprimterm oder Kernprimimplikant ist ein Primterm, die Minterme enthalt, die
in keinem anderen Primterm vorkommen. Er muf in jeder minimalen disjunktiven Normalform
vorkommen. Das Quine-McCluskey Verfahren bestimmt das Minimum als eine Uberdeckung be-
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Abbildung 3: Logische Minimierung Boolescher Funktionen (a) Quine-McCluskey Verfahren — Beispiel —
Hasse-Diagramm des Suchgraphen (b) Wah}jheitstabelle mit Don’t Cares ('d’ statt '0’ oder '1’) der Booleschen
Funktion f(a,b,c) [CMU] (c) Uberdeckungen der Booleschen Funktion f(a, b, ¢)

stehend aus Kernprimimplikanten in KDNF. Abbildung 3(c) zeigt verschiedene Uberdeckungen der
Booleschen Funktion f(a,b,c). Oben links wenn Don’t-Care-Werte in ’'1’-Werte tiberfiihrt wurden:
£(0,1,1) = £(1,0,0) = 1. Oben rechts die Minimum-Uberdeckung von f. Unten links eine redundan-
te Uberdeckung. Schlieflich, unten rechts eine minimale irredundante Uberdeckung, aber nicht
das Minimum. Da bei der Minimierung Boolescher Funktionen das zugrunde liegende Problem NP-
vollstandig ist, gibt es kein effizientes Verfahren. Die Rechenzeit wachst exponentiell mit der Anzahl
der Variablen n. Allein die Anzahl der Primimplikanten fiir eine Funktion mit » Variablen kann so
grof3 sein wie \3/—% [14]. Deshalb wurden KI-Heuristische Verfahren zur logischen Minimierung fir
die VLSI-Synthese, so z.B. von mir am Karlsruher Institut fir Technologie (KIT) [15] entwickelt. Die
Algorithmen waren im mathematischen Sinne beweisbar und ihre Implementierung basierte auf
rekursive Funktionen. Als ich zur Entwicklungsabteilung von Siemens AG Automatisierung wech-
selte, benutzten wir im Entwicklungsteam mein KI-fur-VLSI-Programm, um ASICs als Bestandteile
von Spezialprozessoren zu entwerfen, die wir in der Gruppe entwickelt haben. Danach habe ich auch
das dazu passende Echtzeitbetriebssystem fiir Multiprozessorsysteme geschrieben. AnschliefSend,
in 1985, habe ich mit einer Gruppe von etwa 15 Technologen das deutsche VLSI-flir-KI-Komitee in
Berlin gegriindet, um auch die Entwicklung von KI-Chips voranzutreiben.

Im Bereich des Maschinellen Lernens hat man tiber die Jahre veschiedene Lernmethodentypen
eingesetzt. Zunachst, wurden tberwachte Lernmethoden (auf Englisch: Supervised Learning me-
thods) eingesetzt, um Ausgangsdaten auf der Basis von vorher ungesehen Eingangsdaten zu gene-
rieren nachdem Trainings-Eingangs- und -Ausgangsdaten mit bekannten Bezeichnungen verwendet
wurden, um ein Ein-Ausgangs-Modell zu bilden. Untiberwachte Lernmethoden (auf Englisch: Un-
supervised Learning methods) halfen, Muster in Daten ohne bekannte Bezeichnungen aufzudecken.
Beide Lernmethodentypen, tiberwacht und untiberwacht, waren im Prinzip ungeeignet, Sequenzen
von Daten zu erlernen, und ihr Einsatz in Bereichen wie in der Robotik begrenzt [16]. Fokussierte
Erweiterungen der neuronalen Netzwerkarchitekturen habe ich dann eingeftihrt [17], so daf auch
Datensequenzen erlernt werden konnten. Sie basierten auf dem Konzept der Aufmerksamkeit (auf
Englisch: Attention). Eine Demonstration dieser Fahigkeit folgt. Abbildung 4(a) zeigt Attraktoren fiir
verschiedene Werte des Parameters 7 der Mackey-Glass-Gleichungen [18], eine Familie von nichtli-
nearen Differentialgleichungen mit Zeitverzug. Das entspricht der Visualisierung von (P(t), P(t—1)).

Sie werden wie folgt definiert (hier nur eine von zwei Gleichungen): C“Zf) = ffﬂfzﬁ;;% — vP(t). Sie
werden zur Modellierung physiologischer Systeme eingesetzt und zdhlen zu einem der beliebtes-
ten Standard-Benchmark-Datenséatze fuir solche Aufgaben, d.h. die Pradiktion komplexer Zeitrei-
hen. Abbildung 4(b) zeigt oben und in der Mitte jeweils eine gesunde (r = 6) und eine patholo-
gische (7 = 20) Veranderung der Blutzelldichte. Ganz unten wird die Mackey—-Glass-Zeitreihe und
ihre Parameterwerte gezeigt, die zum Bestatigen des erfolgreichen Aufmerksamkeitsmechanismus

in der neuronalen Netzwerkarchitektur verwendet wurden. Abbildung 4(c) zeigt jeweils oben und
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Abbildung 4: Zeitreihenanalyse — Aufmerksamkeit in neuronalen Netzwerkarchitekturen (a) Attraktoren der

Mackey—-Glass-Gleichungen (b) Mackey-Glass-Zeitreihen (c) Ergebnisse — Erlernen von Datensequenzen mit

neuronalen Netzwerkarchitekturen mit Aufmerksamkeit [17] (d) Transformer-Aufmerksamkeit: das skalierte
Skalarprodukt (e) die Mehrkopf-Aufmerksamkeits-Funktion [19]

unten die Ergebnisse der neuronalen Netzwerkarchitektur mit jeweils 81 und 256 Neuronen in der
Zwischenschicht eines RBF-Netzwerkes ohne wesentliche Unterschiede. Abbildung 4(d) zeigt den
Aufmerksamkeitsmechanismus der Transformerarchitektur, der die Aufmerksamkeitsgewichte zwi-
schen verschiedenen Elementen in einer Sequenz bestimmt. Schlieflich, Abbildung 4(e) zeigt die
Mehrkopf-Aufmerksamkeits-Funktion, die mehrere solche Berechnungen erlaubt, um gleichzeitig
verschiedene Aspekte der Daten zu berticksichitigen.

Bei bestdrkenden Lernmethoden (auf Englisch: RL = Reinforcement Learning) [20] erkundet ein
Agent die Umgebung, um die optimale Strategie herauszufinden. Durch das Konzept der Markow-
Kette [21] wurde die Anwendung des Gesetzes der grofien Zahlen von Folgen unabhéangiger Zufalls-
variablen von Andrei A. Markow auf Folgen abhingiger Zufallsvariablen erweitert, die die Markow-
Eigenschaft gentigen, eine gedidchtnislose Eigenschaft eines stochastischen Prozesses, nach der nur
der gegenwartige Zustand die Wahrscheinlichkeitsverteilung zukutinftiger Zustidnde beeinflusst. Bei
Systemmodellierungen eignen sich Markow-Ketten, um zufillige Zustandsdnderungen eines Sys-
tems zu modellieren. Wenn man eine Markow-Kette um einen Agenten erweitert, der sich zwi-
schen mehreren moéglichen Aktionen entscheiden kann und positive oder negative Belohnungen als
Ruickmeldung erhélt, dann hat man einen Markow-Entscheidungsprozess. Abbildung 5(a) zeigt die
Definition einer Markow-Kette mithilfe der Markow-Eigenschaft. Abbildung 5(b) zeigt die Definition
eines Markow-Entscheidungsprozesses und das Ziel des Agenten, der seine Aktionen mit Hilfe einer
Strategie = auswahlt. Abbildung 5(c) zeigt ein inverses Pendel montiert auf einem Wagen als Beispiel
fiir einen Markow-Entscheidungsprozess. Ein Markow-Entscheidungsprozess (MEP) [22] ist ein Tu-
pel (S, A, R, P,p) wo S, A der Zustandsraum und die Aktionsmenge jeweils sind. R : S x A x S — R
ist die Belohnungsfunktion die jeder Transition von einem Zustand zum Folgezustand durch eine
spezifische Aktion eine reellwertige Belohnung zuordnet. P : S x A — P(s1|spap) ist die Transitions-
wahrscheinlichkeitsfunktion. Schlieflich, p(s) — [0, 1] ist die Startzustandswahrscheinlichkeitsver-
teilung, die die Wahrscheinlichkeit eines Systemstarts in einem gewissen Zustand beschreibt. Das
System startet im Zustand sy mit Wahrscheinlichkeit p(s) und fahrt eine Aktion ¢ aus, das System
erreicht dann den Folgezustand s; mit Wahrscheinlichkeit P(s;|spap). Diese Transition vom Zustand
so zum Folgezustand s; erhéalt die Belohnung ro = R(so,ao,s1), die die Wirksamkeit der Aktion im
Hinblick auf ihren Beitrag zum Gelangen des Gesamtziels quantifiziert. Die Reihenfolge wiederholt
sich vom Zustand s; aus und nachfolgend wird die Trajektorie 7 = {so, ap, s1;a1,...} generiert. Das
Ziel des Gesamtprozesses ist den Gesamtertrag R(7) = Y _;_, 7' R(st, az, $¢4+1) zu maximieren, mit 7' die
Trajektorienldnge, auch Horizontldnge genannt, und v € [0, 1] der Diskontierungsfaktor, der Beloh-
nungen gewichtet, die kurzfristig erfolgen, hoher als solche, die spater erfolgen. Ein MEP, bei dem
die Anzahl von Zustidnden und Aktionen endlich ist und alle Transaktionswahrscheinlichkeiten und
Belohnungen bekannt sind, kann mit Hilfe der dynamischen Programmierung [23] iterativ gelost
werden. Das Modell des inversen Pendels montiert auf einem Wagen ist ein Beispiel fiir einen MEP.
Der Zustandsraum kann aus der Horizontallage des Wagens =z und dem Winkel 6 zwischen dem
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Abbildung 5: (a) Markow-Kette (auf Englisch: Markov Chain (MC)) [MIT] (b) Markow-Entscheidungsprozess
(auf Englisch: Markov Decision Process (MDP)) [UCB] (c) Beispiel: das inverse Pendel montiert auf einem
Wagen

Pendel und der Vertikalachse bestehen oder aber aus dem Winkel § und der Winkelgeschwindigkeit
f. Der Aktionsraum besteht typischerweise aus der Kraft F' mit der der Wagen balanciert wird oder
aus einem entsprechenden Drehmoment M. Die zu definierende Belohnungsfunktion R bietet einen
Anreiz dafur, dafl das Pendel in die aufrechte Position schwingt, moglicherweise auch mit Strafen
fiir iberméagigen Kontrollaufwand. Die Transitionswahrscheinlichkeitsfunktion P wird mithilfe der
Pendelsystemdynamik bestimmt. Auf dieser Grundlage kénnen dann optimale Kontrollstrategien
mittels z.B. bestarkende Lernmethoden errechnet werden.

Bei bestdarkenden Lernmethoden alternieren sie zwischen dem Sammeln von Daten durch In-
teraktion mit der Umgebung und der Optimierung einer Ersatzzielfunktion. Strategiegradientenme-
thoden (auf Englisch: Policy Gradient (PG) methods) optimieren die Zielverlustfunktion LY%(9) =

&, [log 7T€(at|3t)At . E, gibt empirisch den Durchschnitt einer begrenzten Anzahl von Daten an, my

ist eine stochastische Strategie und A, ist eine Schatzung der Vorteilsfunktion zum Zeitpunkt ¢,
die den relativen Nutzen der Durchfiihrung von der Aktion « im Zustand s unter der Strategie 7
quantifiziert. Ein Nachteil dieser Methoden ist die kontraproduktive Generierung von grofien Stra-
tegieaktualisierungen. Bei der Lernmethode Strategieoptimierung der Vertrauensregion (auf Eng-
lisch: TRPO = Trust Region Policy Optimization) wird folgendes uneingeschranktes Optimierungs-

problem geldst: maxg K, [rt(H)At — B+ KL[mg,,,(-|s¢), 7['9(*‘8,5)]} , dabei stellt r,(0) = % ein Strategie-
verhiltnis dar, § ist ein einstellbarer Hyperparameter und die Kullback—Leiblér(KL]—Divergenz [24]
ist ein Mag fiir die Unterschiedlichkeit zweier Wahrscheinlichkeitsverteilungen, die numerisch be-
rechnet werden muf3. Eine Verbesserung dieser Lernmethode wurde durch die Lernmethode pro-
ximale Strategieoptimierung (auf Englisch: PPO = Proximal Policy Optimization) [25] eingeftihrt,
die die Stabilitit und Zuverlassigkeit beibehdlt, aber einfacher zu implementieren ist, denn sie oh-
ne relativ komplexe KL-Divergenz-Berechnungen auskommt. Die PPO Lernmethode verbessert die
Trainingsstabilitit des Agenten, indem zu grofie Strategieaktualisierungen vermieden werden. Die
PPO-Zielfunktion lautet: Li(0) = E; [L{P(0) — e LY (0) + caS[mg)(st)] , c1, c2 sind einstellbare Hyper-
parameter. Um die Aktualisierungen auf einen vordefinierten Bereich zu beschranken verwendet
man LELP(9) = R, [min (rt(é?)flt, clip(r¢(0),1 —¢,1 + e)flt)}. LYF ist der mittlere quadratische Verlust

(Va(st)—V/"9))2. Um die Erkundung des Aktionsraums zu fordern addiert man einen Entropie-Bonus
Slral(st).

So wie wir bereits einen Fall in der Booleschen Algebra besprochen haben wo durch KI-Heuristiken
Losungen ermoglicht wurden, besprechen wir zunichst noch einen Fall in der abstrakten Algebra
wo neue Erkenntnisse zu einem noch nicht bewiesenen Problem mittels maschinellen Lernens ge-
wonnen werden konnten. Auf dem Gebiet der kombinatorischen Gruppentheorie gibt es wie sonst
in der Mathematik eine Fulle von ungeldsten Problemen, so wurde z.B. die noch nicht bewiese-
ne Andrews—Curtis(AC)-Vermutung in ihrem Beitrag tber freie Gruppen und Henkelkoérper ein-
geftihrt [26]. Eine ausgewogene Prasentation ist eine Prasentation mit derselben Anzahl n an Er-
zeuger und Relationen: P = (xy,---,x,|r1, -, r,). Die Andrews—Curtis-Vermutung lautet: irgendeine



Algorithm 3 Adaptive Al Model Tra

| Environment | t: Inp:
= state 5

action |’4II \
| Ny /) reward I}
action ‘Envlmnmem/ Y state s g Agent
| 7 L )
U N J reward 1y
E Agent |

A',

new hard cases _//

new actions

) —| Upgrade policy / schedule
(a) (b) (c)

Abbildung 6: Untersuchung der Andrews—Curtis(AC)-Vermutung [28] (a) Zyklus der bestarkenden
Lernmethode (b) Erweiterung mit adaptivem Aktionsraum (c) Adaptives Modelltrainieren und Wegfindung

ausgewogene Prasentation der Trivialgruppe (z1,--, 2, |r1,---,7,) Kann in die Trivialprasentation
(x1,---,zp|z1, -, zy) Uberfihrt werden durch eine endliche Folge von Elementartransformationen,
auch AC-Ziige genannt, und wie folgt definiert: (1) einige r; durch r;r;,i # j zu ersetzen, (2) einige
r; mit r;- lauszutauschen und (3) einige r; in gr;g~! zu tiberfithren mit g ein Erzeuger oder seine
Inverse. Die Lange einer Prasentation errechnet sich als die Summe der Wortlangen von allen Rela-
tionen. Prasentationen die durch eine Folge von AC-Zligen ineinander transformiert werden kénnen
nennt man AC-aquivalent. Eine Prasentation heif$st AC-trivial wenn sie AC-aquivalent zu einer Tri-
vialprasentation ist. Um eine bestimmte Prasentation auf Trivialitdt zu untersuchen kann man sys-
tematisch den gesamten Raum moglicher Sequenzen von AC-Zigen absuchen, bis eine Sequenz die
Prasentation trivial macht. Dieser Raum wichst aber exponentiell mit der Anzahl an Sequenzen.
Die Gesamtzahl der Sequenzen von AC-Ziigen der Lange k fiir eine Prasentation mit n Erzeugern
ist (3n2)*, d.h. ein Brutalkraftansatz ist unpraktikabel. Prisentationen aus der infiniten Akbulut-
Kirby(AK)-Reihe [27] méglicher Gegenbeispiele: AK (n) = (z,y|z" = y" ", xyx = yry),n > 2 sind tiber
die Jahre untersucht worden. AK (2) der Lange 11 ist AC-trivial. AK (3) der Lange 13 hat sich aber bis
dato nicht trivialisieren lassen. Das der Andrews-Curtis-Vermutung zugrundeliegende Problem kann
als Markow-Entscheidungsprozess (MEP) formuliert werden. Prasentationstrivialisierungen mithilfe
u.a. von bestirkenden Lernmethoden werden in [28] untersucht. Durchsuchen der Graphenknoten
erfolgt zundchst durch Breitensuche und einen Greedy-Suchalgorithmus, der die Zustdnde in ei-
ner Prioritatswarteschlange halt, deren Ordnung durch den Tupel (k,[) bestimmt wird, mit £ und
| jeweils die Prasentationlange und die Pfadliange zwischen dem Zustand und dem Initialzustand.
Der Zustand mit dem Kkleinsten Wert von k£ wird gewahlt. Wenn es mehr Zustande gibt, entschei-
det der kleinste Wert von [. Dann wird eine bestarkende Lernmethode, die proximale Strategieop-
timierung (auf Englisch: PPO = Proximal Policy Optimization), angewandt, um AC-Trivialisierungen
ausgewogener Prasentationen zu finden. Die Ergebnisse werden mit denen verglichen, die mithil-
fe der o.g. Suchalgorithmen bestimmt wurden. Tiefgreifende Eindriicke konnten gewonnen wer-
den, z.B. beim Testen der Ansatzwirksamkeit mithilfe von Prasentationen aus der Miller-Schupp-
Reihe [29] moglicher Gegenbeispiele: M S(n,w) = (x,ylz " 1y"x = y"* 2 = w). So z.B. sind fiir n = 3
und w; = y 'z lyzy die Prasentationen MS(n,w;) der Lange 15 und AK (n) AC-dquivalent. Die PPO
Lernmethode wird eingesetzt, um die Strategiefunktion = zu ermitteln. Wenn aber die Horizontlange
konstant gehalten wird, konnen komplexe Prasentationen entweder nicht gelést werden, wenn die
Horizontlange zu klein ist, oder erhebliche Rechenressourcen sind erforderlich, damit das Training
konvergiert, wenn die Horizontlange zu grof3 ist. Deshalb wurde die Horizontlange in den Experimen-
ten dann variable gehalten, mit Werten steigend von 200 auf 1200 fiir Umgebungsinteraktionen von
jeweils 10 auf 50 Mio. Der PPO-Agent konnte dann zunéchst einfache Prasentationen l6sen, um da-
nach mit erhéhter Fahigkeit komplexere Miller-Schupp-Prasentationen mit grofer Horizontlange zu
verarbeiten, einschlieflich welche, die die Suchverfahren nicht imstande waren zu 16sen. Es emp-
fiehlt sich also das Hinzufligen von zunehmend ldngeren Sequenzen elementarer AC-Ziigen zum
Aktionsraum zu ermoglichen. Abbildung 6(a) zeigt den grundlegenden Zyklus der bestiarkenden
Lernmethode. Abbildung 6(b) zeigt die Erweiterung des Modells mit einem adaptiven Aktionsraum.
Abbildung 6(c) zeigt einen Algorithmus zum adaptiven Modelltrainieren und Wegfindung.

Wie hier konkret gezeigt wurde, kénnen manche Mathematik-Probleme eine geeignete Platform
darbieten, um selbstverbessernde KI/ML-Systeme auf dem Weg zur Kiinstlichen Generischen In-
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Abbildung 7: Kuinstliche Generische Intelligenz (auf Englisch: Artificial Generic Intelligence (AGI) — Robotisch
autonomes Greifen einer generischen Kugel [17]

telligenz (auf Englisch: Artificial Generic Intelligence AGI) zu untersuchen und weiterzuentwickeln,
nachdem Grof3e Sprachmodelle (auf Englisch: Large Language Models LLMs) [30] sich mit beinahe
menschlicher Kompetenz unterhalten kéonnen, die neuesten Modelle schliefen u.a. OpenAl GPT4.5
und o3-mini [31] sowie DeepSeek V3 and R1 [32] ein. Grundlagen der LLM Theorie und Praxis
konnen z.B. in [33] nachgeschlagen werden. Wenn wir uber die Sprache hinaus zum Verhalten
ubergehen, d. h. wenn wir KI/ML-Systeme einschliefllich intelligente, autonome, lernende Robo-
tersysteme der nachsten Generation [34] entwickeln, dann bendétigen wir Grofe Verhaltenmodel-
le (auf Englisch: Large Behavior Models LBMs) oder verwandte, die aus Expertendemonstrationen
vielfaltige Aufgaben einschlieSlich Handlungsmuster und kontext-sensitive Interaktionen lernen. Sie
bieten in der Regel erweiterte RL-Fahigkeiten in entsprechenden Anwendungen, insbesondere mit
Ruickkopplung aus der realen Welt, aber nicht nur. Der Stand der Technik im Bereich der Kiinstlichen
Generischen Intelligenz und der Kiinstlichen Super Intelligenz (auf Englisch: Artificial Super Intel-
ligence ASI) wurde in [35] kritisch betrachtet, mit einer niichternen Sichtweise, welche intelligente
Maschinen mit menschendhnlichem Verhalten oder sogar tibermenschlichen Fahigkeiten entwickelt
worden sind oder derzeit auf dem Weg sind. Abbildung 7 zeigt noch ein Beispiel im Bereich der
multivariaten Approximationstheorie, einem Bestandteil der Funtionalanalysis in der Mathematik,
und dann im Bereich Robotik eingesetzt, wie Lernmethoden und Systeme der Kunstlichen Gene-
rischen Intelligenz entwickelt werden kénnen. Abbildung 7(I) zeigt die idealisierte Umgebung: ein
Roboterdreifingergreifer mit 4 Entfernungsmessern und die zu greifende generische Kugel. Abbil-
dung 7(II) zeigt verschiedene Situationen wie die Entfernungsmessungen von der Kugeloberflache
vorkommen kénnen, Vorder- und Seitenansichten werden angezeigt. Abbildung 7(III) zeigt links die
multivariate Funktion (z,y, z,7) = f (21, 22, 23, 24), die mittels ein selbstentwerfendes neuronales Netz-
werk approximiert wurde und rechts die Trainings- und Testdatengenerierung, die mittels einer
geeigneten Simulationsumgebung realisiert wurde. Der Ansatz kann auf andere zu greifende Kérper
angewandt werden. Das Generalisieren des Generalisierens auf irgendwelche zu greifenden Objekte
erfordert z.T. das Umgebungsurkunden und adaptive Lernmethoden wie hier z.T. skizziert. Wahrend
Schachspielpartien nur ein paar Dutzend Zige dauern, die KI-Systeme bereits beherrschen, erfor-
dern komplexe Losungen fiir viele mathematische Probleme je nach Komplexitat Millionen, Milliar-
den oder sogar mehr Schritte. Erste KI/ML-Systeme, die dabei behilflich sein kénnen, befinden sich
bereits in der FuE, die insbesondere lange, schwer zu findende Schrittfolgen entdecken, d.h. die
Ausreifler in der statistischen Verteilung der Losungen, analog zum automatischen Entdecken von
Ausreifiern [36] in zur Verfigung gestellten Daten beim vo6llig automatischen Entwerfen von neu-
ronalen Netzwerkarchitekturen und deren Training durch assoziierte Lernmethoden [17]. Im Kern
basieren viele der KI/ML-Losungsmethoden auf Suchstrategien und liefern je bessere Losungen de-
sto bessere Suchstrategien sie beinhalten, wie z.B. in [37] eindeutig beschrieben. In diesem Bericht
werden verschiedenartige Mathematikprobleme untersucht, wo der Einsatz von KI-ML-Methoden
vehemente Vorteile gegentiber dem Stand der Technik einftihren, z.T. um ungeldste Probleme der
Mathematik herauszufordern und ggf. zu 16sen. Zumindest einiger dieser Losungen werden uns er-
lauben, weiterhin KI-ML-Systeme mit menschendhnlichem Verhalten oder sogar iibermenschlichen
Fahigkeiten [38] zu entwickeln, wie der Verfasser seit Jahrzehnten meistert.
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