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Abstract

An Al world model seen as a learned, internal, predictive model of the environment, that is, a model
which understands rules, physics, and dynamics of its surroundings, allows to predict future states
from current and past states based on observations and potential actions. A few key represen-
tative world models are first introduced for explanatory purposes without being exhaustive of the
rapid evolution of this research and technology development area. Basic model examples include
the Joint Embedding Predictive Architecture (JEPA) [8], see Figure 1, and its domain-specific vari-
ants {Image-, Video-, Audio-, LLM-, ...} as well as a multimodal world model called Marble [9], see
Figure 2. Physical Al enables intelligent, autonomous systems including cameras, robots, and self-
driving cars perceive, understand, reason, perform, and orchestrate complex actions in the physical
world. For the development of physical Al for autonomous vehicles (AVs), robots, and video analytics
Al agents, NVIDIA offers the Cosmos platform [10]. This platform, purpose-built for physical Al, pro-
vides generative world foundation models (WFMs), guardrails, and an accelerated data processing
and curation pipeline. Figure 3(a) shows the world foundation models included: autoregressive and
diffusion-based WFMs, advanced video tokenizers, and a CUDA (Compute Unified Device Architec-
ture), Al-accelerated data pipeline for video processing and curation. Based on text, image and video
prompts, Figure 3(b) shows how virtual world states are generated as videos. Omniverse is used to
build physics-based geospatial-accurate scenarios, its output can then be rendered into Cosmos.
which then generates photo-real physically-based synthetic data, cf. Figure 3(c).

World models are commonly used for autonomous driving, recent surveys include [11]. While
requiring active driver supervision, minimal intervention, and not making a vehicle autonomous,
Tesla’s Full Self-Driving (Supervised) [12] can be used for quick errands, daily commutes and road
trips, intelligently and accurately completing driving maneuvers including route navigation, steer-
ing, lane changes, parking and more. It is conceived and trained with real-world driving data to
take care of the most stressful parts of daily driving, making the roads safer for you and others.
Figure 3(a), (b), and (c) show three maneuver examples: avoiding T-bones, stopping for a pedestrian,
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Figure 1: The Joint Embedding Predictive Architecture (JEPA) [8] (a) Generic architecture (b) Non-contrastive
training (c) Hierarchical planning in an uncertain environment.
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Figure 2: Marble, a Multimodal World Model [9] (a) Creating a full 3D world (b) Text-to-world generation
(c) Multi-image-to-world generation.

Figure 3: Cosmos, a World Foundation Model Platform for Physical Al [10] (a) Foundation models included
(b) Generated virtual world states video (c) Omniverse scenarios to Cosmos to generate synthetic data.
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Figure 4: Full Self-Driving (FSD) Supervised [12] (a) Avoiding T-bones (b) Stopping for a pedestrian
(c) Reacting to a car door opening.



STS-55
SPACE SHUTTLE
MISSION REPORT

= i
AAial)]

Figure 5: NASA Space Shuttle STS-55 Mission Report [14], Space Shuttle Cargo Bay, ESA Spacelab
Integration [15], and ESA Spacelab Modeling.

Figure 6: DLR Rotex Spacelab Rack (#6), Lab Mockup, Computer Graphics Modeling, Rendering of the entire
Spacelab Workcell at the Ground Control Segment [16], Mission Operation with Stereo Display.

and reacting to a car door opening, respectively. FSD (supervised) and the attentive human driver
are both looking for and avoiding hazards. If both can perform well, then together, human driver
with FSD (supervised), can be expected to perform safer than a human driver on his own. The Tesla’s
vehicle safety report [13] shows that globally, vehicles driving with FSD (supervised) on have almost
one and a half better safety record on city streets than similar vehicles driven manually.

In advanced intelligent, autonomous robotics, in particular for space mission-critical applica-
tions, but not only, Al world models have been used extensively. For example, way ahead of its time
(a few decades), the group under my supervision at the German Aerospace Center DLR in Oberp-
faffenhofen by Munich and industrial partners as well as national space agences including NASA
and ESA, successfully introduced these technologies as first to the world and launched a NASA/ESA
mission demonstrating them. A substantial part of those developments have already found their ap-
plication path to several industrial and commercial applications. Figure 5 shows the corrresponding
NASA Space Shuttle STS-55 mission report [14], the space laboratory fitting into the Space Shuttle
cargo bay ESA Spacelab being integrated [15] as well as regarding the focus of this contribution:
world models, the modeling of the ESA Spacelab. Figure 6 shows an ESA astronaut working inside
the ESA Spacelab, the modeling of adajacent Spacelab racks, a photograph of rack #6 of Spacelab
where the DLR space robot flew to space, a modeling of that rack including the space robot and all
necessary tools for the experiment, a mockup of that workcell at the DLR robotics lab for develop-
ment, testing, and integration, the computer graphics modeling of that workcell, the rendering of the
entire Spacelab workcell at the Ground Control Segment [16], as well as testing mission operation
with an stereo display at the DLR robotics lab.

Figure 7 shows an overall block diagram of the mission including the NASA Johnson Space
Center (JSC) in Houston, TX, the German Aerospace Center DLR in Oberpfaffenhofen (OP), Germany
as well as the NASA’'s Space Shutlle, the ESA’s Spacelab, the DLR’s Rotex space robot and the
communication channel structure, one image of the Spacelab workcell (top) and the space robot
gripper stereo cameras (bottom), a block diagram of DLR’s Tele Sensor Programming (TSP) used
during the NASA-ESA-DLR Rotex experiment flown and used for satellite servicing applications, and
finally, key DLR OP infrastructure for satellite servicing applications. A detailed description of the
work environment, i.e., a highly accurate world model, is indispensable for TSP to work, i.e., for the
teleoperation and the fully autonomous operation of space robots as well as for all inbetween shared
control modes of operation under long communication time delays since we in principle control the
future shown in the operator display. The operator could be a teleoperator on Earth, an astronaut
in space, or a fully autonomous space robot brain. We demonstrated all those modes of operation
during the mission flown. That means that what is being shown in the display are multisensory as



Figure 7: DLR Tele Sensor Programming (TSP) [17]: in NASA-ESA-DLR Rotex Experiment flown, One Image
of the Spacelab Workcell and Space Robot Gripper Stereo Cameras, TSP Block Diagram, in DLR Satellite
Servicing Application Infrastructure.

Figure 8: Autonomous Operation of Space Robot inside ESA’s Spacelab aboard NASA’s Spaceshuttle.
Real-Time Processing of Multisensory Data including Stereo Cameras and Laser Range Finders Based on
Object’s Geometric and Dynamic Modeling as well as Delay Compensating Modeling for Predictive 3D
Graphics Simulation.

well as control data corresponding to the future when they will be happening in space, i.e., during
the experiment, the present is typically on Earth, the future is in space. The time difference between
the present and the future are precisely those long communication time delays. The world model,
without which TSP could not work, is either generated off-line using exact knowledge of the geometry
and the location of all parts of the work cell or a sensor-based world modeling approach. This world
model needs to be updated to reconcile the virtual world description with the real environment,
found by the available sensors [18].

Figure 8 shows the fully autonomous approach and final catching of the floating object under
microgravity in the DLR Rotex Spacelab workcell during the mission, then also that not only gripper
tiny stereo cameras were operating, but also laser range finders built into the gripper fingers, a white
ray is noticeable in the third pic from the left, and finally some of the computer vision processing
performed overlaying tracked pixels onto the image of the object edges. To be able to process multi-
sensory data including stereo camera images in real-time I conceived, designed and built the most
powerful mission-critical real-time supercomputer of its time [19], it was 100x, 1000x, ... faster than
the Cray because it was scalable, could do anything that general-purpose supercomputer could do
and much more and much faster. Figure 9 shows a block diagram of the machine, then a photo-
graph with a highly preliminary version of that processing engine, during the mission a larger, more
powerful version was used, I included even faster processors of different types (scalable parallel dis-
tributed architecture) as well as highly optimized custom algorithm libraries, and finally testing the
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Figure 9: Scalable, Mission-Critical, Real-Time Parallel Distributed Al/ML Supercomputer [19] and
Real-Time Computer Vision Processing to Track and Grasp a Floating Object under Microgravity.



Figure 10: AI/ML World Modeling — Vision Processing [23] and AGI Training Simulation [24].

approach and catching of the flying object under microgravity with the space robot Rotex multisen-
sory gripper. The machine provided the capability of processing all the artificial intelligence (Al) /
computer vision (CV) algorithms including modeling and world model updates (geometric/static and
dynamic) in real-time and delivered the continuously updating data over the VME Real-Time LAN
interface to the SGI graphics rendering engines for convenience and for the aforementioned DLR’s
Tele Sensor Programming (T'SP) approach running on additional separate general-purpose comput-
ers to operate successfully (teleoperation, fully autonomous control and all other modes inbetween).
The graphics rendering could have been processed in the machine too since parallel graphics pro-
cessing algorithms I had made available as well. Multiple displays were attached to the machine for
displaying intermediate results, and among others, so too an interface to custom image and mul-
tisensory databases. Today lots of the processing power and respective modules could be packed
into AI/ML/vision chips [20], there are though some highly specific mission-critical interfaces that
would need to be added as realized in my machine to extremely successfully operate this type of
missions (space, aerial, terrestrial, submarine) or embedded in miniaturized autonomous robotic
agents [21], both virtual and real.

Now let us turn our attention to dynamic modeling. For visual dynamic scene understanding,
for example, recursive estimation methods have been used in the so called 4D approach to dynamic
vision [22] making use of spatio-temporal models of objects and processes observed. In the context
of recursive estimation, the model equation of a continuous, nonlinear dynamic system is defined by
Z = f(Z(t),ad(t), Z(t), ps) with Z(t) the n-vector of state variables, @(t) an r-vector of control variables,
Z(t) an n-vector of disturbances, and ps a vector of system parameters that usually cannot be mea-
sured directly but only through an m-vector y(t;) of output variables at discrete points ¢; in time
spoiled by some superimposed measurement noise w(t), whose statistics are assumed to be known
sufficiently well. The standard form after the transformation of that model equation into a discrete
linear state transition model for sampled data with cycle time 7' is &y = A-Z;_1+ B-i}_1+7; where A is
the n x n state transition matrix from (k — 1)7 to k7', B is the n x r control effect matrix, and v(z(t),T)
is the discrete noise term. The observable output variables (k) depend nonlinearly on the state
variables Z(t) via the measurement process defined by ¢, = h[Z(t), ] + @(t), with 7, being the mea-
surement parameters. The measurement process h in vision according to this particular approach
is the perspective projection. Observability is assumed, that means that P,Q, R, the state error,
process noise, and measurement noise covariance matrices, respectively, are known. When the
nonlinear measurement equation is linearized around the predicted nominal state 7y of the process
and the nominal parameter set g (¢ values), without the noise term, we obtain y*(k) = yn (k) + 6@(1@
with ¢y (k) = h[Zn(t), P, k], the Jacobian matrices of perspective mapping w.r.t. the state compo-
nents and the parameters involved being C; = Oh/0|y., Cyp= dh/0p|n, and the measured prediction
errors 6y (k) = Cz(k)-0z(k) —i—Cﬁ-(S_ﬁ, expression used to detemine the deviations 0z, dp from the nominal
values Zn, pn.

We now outline the entire recursive estimation process. The process starts with an initial hy-
pothesis 7*(0). Then find an estimate for a Gaussian probability distribution of this initial state
p(Zo) = det(2mPy) /2 exp[— (& — Zp)T Py 1(Z — )], setting the mean value to 7, = #*(0) and P, is the
n x n error covariance matrix. If the state components are independent of each other: Pli, j| = 0 for
i # jand Pyli, j| = o4, the state variance components, for i = j. Then, incrementing the time index, the
state variables #* (k) can be predicted using the dynamic plant model Z; = A-Z_1+ B-u}_1+7), and the
predicted nominal measurement values y* (no noise) can be computed using the the measurement
model j* (k) = h[#*(k), ;). the noise model assumed being white noise: E[w] = 0, E[w” - @] = R. Now



we can compute the prediction errors using actual measurement values (k) and oy(k) = 7(k) — 7* (k)
and improve the state estimate using the innovation step defined by (k) = #* (k)+K (k) 8y (k). We will
then use this new estimate for the state variables in the next recursion loop. K (k) is a gain matrix,
which in the stochastic scheme (Kalman filter), as opposed to the deterministic scheme (Luenberger
observer) with no noise modeled, is called the Kalman-gain matrix. In this case, the dynamic plant
model entails noise described by E[v] = 0, E[¢! - ] = Q. During the process called filter tunning, all
assumed uncorrelated covariance values need to be appropriately determined. With this in mind, the
process loop entails: computing the expected values using 7; = A(k—1) -Zy_14+B(k—1)-i@),_,. Then pre-
dict the expected error covariance matrix using P*(k) = A(k—1)-P(k—1)-AT(k—1)+Q(k—1). Now com-
pute the expected measurement values 7*(k) = h[Z*(k), 5,»] and the Jacobian matrix C' = 97" /07| .
Then compute the gain matrix for the prediction error feedback using K = P*-CT.{C-P*-CT + R} !
(minimizes the covariance matrix of the estimation error P = F [65? . 627] given the underlying con-
straints), update the state variables per innovation using #(k) = 7* (k) + K (k)-[§/(k) —7*(k)], and update
the error covariance matrix using P(k) = P*(k) — K (k) - C(k)- P*(k). This concludes the basic version
of the filter for explanatory purposes. There are several improvements when applied in practice.
Now we briefly present a key model of three-dimensional objects and how to generate their repre-
sentation from noisy sensor data. Figure 10 shows a modeling of modeling approach for three dimen-
sional visible surface reconstruction, also multi-resolution-capable, to model natural and man-made
objects, based on a sparse map of depth data computed for example by the stereo vision processing of
a pair of images. Shown are the sparse depth data generated when processing real image data from a
stereo camera system and the reconstructed parameterizable surface function. Next the structure of
one type of a so called computational molecule of the model is shown and then its placement on the
border between two adjacent processors while performing parallel processing of the model to achieve
real-time capability. For this modeling of modeling approach, the energy functional of the associated
variational problem is of the type £(v) = S(v) + P(v), S(v) and P(v) are stabilizing and penalty func-
tionals respectively, with S,-(v) = 5 [ [ p(z,y) {7(z,y)(v2, + 202, + v2,) + [1 — 7(2,y)](v2 + v2) } dzdy and

P(v) =3 {Ziep ag;[v(zi, yi) — d(@i, yi))* + 2 p o [Ve (i, yi) — (i, 4i) 12 + D Qi [oy (i, 9i) — g, yz')]Q}-
p and 7 are continuity control functions over the visual field 2. In the underlying physical model,
p and (1 — 7) represent the spatially varying surface cohesion and tension, respectively. d,p,q are
the depth values and the components of the surface normal 7i(z;, y;), respectively, for further details
including its FEM discretization, numerical computation, and parallel algorithms you can see [23].
It is a modeling of modeling approach because you model the model itself first in its basic capa-
biliies which btw. potentially makes it more adequate than current generic neural network models
using deep learning and others, at least for certain modeling requirements and with higher mod-
eling accuracy and computational throughput. Then the resulting model can model (any) generic
three-dimensional object , i.e., its three-dimensional surface, efficiently.

We now present an example of how to generate training and test data in a virtual world via
simulation to build artificial brains. The case exemplifies furthermore a way at an appropriate level
of abstraction of how biological brains might attempt to learn capabilities as opposed to approaching
a given task by simulating mathematical models of the world and solving the given task in a different
logical, analytical way. Figure 10 also shows, this time on its right half, a robot three-finger gripper
with four distance sensors — distance measurements are z;,i = 1---4 — and a generic ball (sphere)
of radius r to be grasped in an idealized environment. The innovative generation of training and
test data in a supervised learning setting is then outlined. Different situations are shown in which
the distance measurements from the surface of the ball can occur; front and side views are shown
and the corresponding data is generated in this virtual world via simulation. Once a self-designing
neural network is trained and tested with the simulated data, the multivariate function (x,y, z,r) =
F (21,22, 23, z4) has been approximated, and such neural network embedded into the learning robotic
system can provide the robot gripper control with the necessary information to approach and grasp
a ball of any size given sensor measurements. The description of the fully automatic creation of the
neural network architecture from the training and test data [25] is beyond the scope of this paper.



The approach can be applied to other objects to be grasped. The generation of training and test
data entails a certain roaming of the environment. So seen, this can be viewed as a generalizing of
generalizing approach [26]. The inner generalization of the approach is to appropriately approximate
the multivariate functions. The outer generalization of the approach extends the approach to the
grasping of other objects.

In this report, the author analyzes and reports on the further development of previous and cur-
rent Al world models, including some new, innovative of his own. In the wake of an accelerated
international competition to dominate Al technologies, the U.S. Congress is seeking to establish a
unified federal strategy for Al and modernize the government’s research and regulatory approach
to the technology [27]. Government regulations have been controversial, some might be necessary
and some potentially harmful [28]. The matter is so delicate that for example, the current U.S.
Administration (Executive) is apparently drafting an executive order that would direct the Justice
Department to sue states that pass laws regulating Al [29]. At the U.S. DoD too, now the Depart-
ment of War (DoW), there has been a recent realignment of the Chief Digital and Artificial Intelligence
Officer (CDAO) to under the Office of the Under Secretary of Defense for Research and Engineering
(USD R&E) to accelerate the Department-wide Al transformation [30]. In the private sector, the Al
surge is the biggest market boom the world has seen [31]. The market capitalization of alone the
6 world’s most highly valued companies {Nvidia ($5.1T), Apple ($4.0T), Microsoft ($4.0T), Alphabet
($3.3T), Amazon ($2.4T), Meta ($1.9T)}, all heavily involved in Al, add up to $20.7 trillion US dollars.
A core aspect of the Al boom has been so far to invest in Al factories, that is, massive data centers
hosting Al supercomputers made up of Al super chips processing current models, predominantly
LLMs.

Much more powerful Al than currently available, including Artificial General Intelligence (AGI)
and Artificial Super Intelligence (ASI), is claimed to become reality within the next few years [32].
There is on the other end, severe doubts about those expectations, at least in that short period of
time [33]. That GenAl and LLMs are highy useful technologies, that human cognition is currently
still beyond reach, and a more solid, subtantiated description of the AGI/ASI status quo is provided
in [34]. Among others, multiple Natural Language Processing (NLP) tasks can be addressed using
LLMs. Transformers have become the dominant architecture in those domains. If we go beyond lan-
guage to behavior, i.e., develop artificial learning systems including intelligent, autonomous, learning
robotic systems, then we need Large Behavior Models (LBMs) or the equivalent which learn from ex-
pert demonstrations diverse tasks including action patterns and contextual interactions. Rather
than word prediction, emphasis is on actions, choices, and preferences and their derivations after
training when exposed to unseen observations. LBMs enable us to train learning robots with much
less data. Diffusion policies and human demonstrations (imitation) have been the key for those de-
velopments [35]. Some efforts are currently noticeable within the Al R&D, to move from generative
models for language and images [36] to the development of world models that can simulate spatial
relations and reason about the environment before interacting with it [37]. In particular, advances in
scene rendering have been recently achieved, volume rendering is the generation of images from dis-
crete samples of volume data. Techniques include, e.g., splatting introduced in [38], a feed-forward
algorithm, i.e., a method that attempts to map each volumen element into the image plane and
not the other way around (feed-backward method). It renders directly rectilinear volume meshes.
3D Gaussians are used for scene representation and high-quality real-time novel-view synthesis
captured with multiple photos or videos [39]. They preserve desirable properties of continuous volu-
metric radiance fields for scene optimization. 3D Gaussian splatting (3D-GS) is for example used in
the Marble world modeling approach. As was shown in the aforementioned NASA/ESA/DLR space
mission, the degree of sophistication of the world models I designed and deployed has been extremely
high even compared to current efforts. The further development of those applied world models, in-
cluding as previously shown x-of-x world modeling and generalizing approaches at higher levels of
abstraction closer to human cognition capabilities, is herewith being pursued to factually accom-
plish the next big step towards more powerful Al that can be even more utilitarian to all aspects
of human life. Some examples of these developments enabling for instance robots to become more



human and obtain superhuman capabilities are presented in [40] including my work in the context
of the NASA’'s Mars Exploration Program (MEP) to deliver the next gen autonomous Mars helicopters
for the NASA-ESA Mars Sample Return (MSR) Campaign.
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