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Zusammenfassung

Das Problem der dreidimensionalen Oberflichenrekonstruktion wird behandelt. Zunichst
wird das Problem formuliert und ein Ldsungsansatz mittels eines Variationsproblems wird an-
gegeben. Anschlieflend werden iterative Lésungsverfahren linearer Gleichungssysteme auf Paral-
lelrechnern beschrieben, da sie zur numerischen Lésung erforderlich sind. Die Ergebnisse eines
Fallbeispieles werden dann vorgestellt. Dazu wird ein dquivalentes Energiemodell der Auf-
gabenstellung aufgebaut, das dazugehérige kontinuierliche Variationsproblem wird aufgestellt
und anschliefend wird es mit Hilfe der Finite-Elemente-Methode diskretisiert. Eine Ldsung
des enstandenen linearen Gleichungssystems wird mit Hilfe einer Parallelimplementierung des
relaxierten Gauf}-Seidel-Verfahrens (SOR) bestimmt.

1 Einleitung

Im allgemeinen gibt es fiir dreidimensionale Kérper zwei Représentationsformen: Oberflichen-
und Volumen-Reprisentation. Beim Problem der Oberflichenrekonstruktion wird die erste
Reprisentationsform zugrundegelegt. Die Oberflichenreprdsentation kann explizit, implizit
oder parametrisch sein [4). Die explizite Reprisentation ist der Graph einer Funkton zweier
Verénderlichen. Die implizite Reprisentation wird mit Hilfe folgender Funktion angegeben: f:
R® = R, f(z,v,2) = Konstante. (z,y, z) sind die Koordinaten der Punkte P auf der Oberfliche.
Die parametrische Reprisentation wird folgendermafien angegeben: P = (z(s,t),y(s,1), 2(s,1)),
s,t sind die Parameter. In diesem Beitrag werden lediglich Methoden zur Rekonstruktion der
expliziten Form einer Oberfliche behandelt.

Allgemeine Grundlagen iiber Oberflichenrekonstruktionsverfahren kénnen z.B. in [3,20,4,24]
nachgelesen werden. Parallelalgorithmen fiir das SOR-Verfahren werden in [13,14] diskutiert.
In [19] wurden zur Oberflichenrekonstruktion hierarchische Basisfunktionen und die Methode
der konjugierten Gradienten eingesetzt. Uber eine Parallelimplementation wurde in (5] berichtet.

Zwei Einsatzgebiete dieser Rekonstruktionsverfahren in der Robotik sind die Objekterken-
nung im Rahmen von Manipulationsaufgaben und die Gelindemodellierung im Rahmen von
Navigationsaufgaben eines Autonomen Mobilen Robotersystems. Im Abschnitt 2 wird das Pro-
blem formuliert und ein Lésungsansatz mittels eines Variationsproblems wird angegeben. Ab-
schnitt 3 beschreibt iterative Losungsverfahren linearer Gleichungssysteme auf Parallelrechnern
und Abschnitt 4 stellt die Ergebnisse eines Fallbeispieles vor.
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2 Dreidimensionale Oberflichenrekonstruktion

2.1 Problemformulierung

Gegeben ist eine Menge {P; = (zi,¥i,2),i = 1,-=-n} C R® spirlich verteilter MeBdaten,
(zi,%) € @ C R?, Q ist eine Referenzfliche. Solch eine Menge liegt z.B. vor, wenn Ste-
reobildverarbeitungsverfahren, wie die in [16] beschricbene Verfahren, auf cinem Stercobildpaar
angewendet worden sind und mit Hilfe der Parameter eines kalibrierten Stereokamerasystems?
aus den Pixelwerten einzelner zugeordneten Punkte P, (2L, ¥ir.), (%ir, ¥ir) jeweils fiir linke und
rechte Kamera, die X—, ¥ — und Z—Koordinaten der Punkte P; zuriickgewonnen worden sind.
Das zyklopische Koordinatensystem (vgl. Abbildung 1) kann als Referenzkoordinatensystem in
diesem ['all angenommen werden.

Gesucht wird eine Funktion z = v(z,y), VY(z,y) € 9, die die vorgegebenen Entfernungs-
daten mdglichst optimal und kontinuierlich approximiert unter Deriicksichtigung der vorgege-
benen Tiefen- und Orientierungsunstetigkeiten. In der numerischen Losung liegen mciatens
lediglich diskrete Werte fiir (zi,3) € Q vor. Deshalb 1iBt sich auch sagen, dab die Menge
{P; = (ziy¥ir ), Y(zi, i) € 0,2 = v(zi,yi)} dicht verteilter Entfernungswerte gebildet wird.
Es handelt sich also um die Approximation einer Funktion zweier Veriinderlichen, die bekannt-
lich ein Inversproblem darstellt. Abbildung 2 zeigt ein Beispiel einer idealen Rekonstruktion.

2.2 Loésungsansatz als Variationsproblem

Die Losung des oben gestellten Approximationsproblems kann folgendermafen angesetzt wer-
den:

Suche u: &(u) = lienjl'{(‘,'[i.') (1)
E(v) = S()+P() (2)

‘H ist der Raum der méglichen Losungen. § ist ein Regularisierungs-Funktional. P ist ein
Straf-Funktional, das die Abweichung zwischen MeBdaten und der Funktion v(z,y) miBt.

Um das urspriinglich gestellte Inversproblem zu regularisieren, werden fiir Rekonstrukti-
onsprobleme stellvertretend fiir eine Problemklasse im Bereich des Rechnersehens Funktionale
eingefiihrt, die die Stetigkeitsanforderungen in das zu minimierende Funktional £(v) integrieren.
Fiir Funktionen v : R? — R, Elemente des Sobolevraumes 7{™(R?), wurden auf dem Gebiet der
multivariaten Spline-Approximation folgende Funktionale? vorgeschlagen:

2 = (m amy .,
wh o= [f2 ( ,.)( Sy ey @)

Um Unstetigkeiten miterfassen zu kénnen wurden Funktionale mit kontrollierter Stetigkeit
eingefiihrt [20,12]. Im Abschnitt 4 werden explizit fiir einen Fallbeispiel ausfiihrliche Ausdriicke
angegeben. Ebenfalls wird dort fiir die numerische Behandlung die Uberfithrung des urspriing-
lichen Losungsansatzes auf die Losung eines linearen Gleichungssystems beschrieben. Zunéchst
wird deshalb eine Auswahl iterativer Methoden zur Losung linearer Gleichungssysteme auf Par-
allelrechnern zusammenfaflend dargestellt.

'Das kann mit Hilfe eines dazugehdrigen Stereckamerasystems und herkémmlicher Kalibrierverfahren erzielt

werden,
250lche Funktionale stellen das Quadrat von Seminormen dar. Die Angabe hier erfolgt fiir den zweidimensionalen

Fall.
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Abbildung 2: Ideale Oberflichenrekonstruktion

3 TIterative Losung linearer Gleichungssysteme auf
Parallelrechnern

Fiir A € R™*",f € R“,E-;E R™, wird das folgende lineare Gleichungssystem definiert:

A-F = b (4)

Zwei Klassen von Losungsverfahren fiir lineare Gleichungssysteme sind:

e Direkte Verfahren: liefern abgesehen von Rundungsfehlern die exakte Lésung. Dazu
gehoren u.a. der Gauflsche Algorithmus, das GauB-Jordan-Verfahren, das Cholesky-Verfahren
Verfahren fiir Systeme mit Bandmatrizen und die Methode des Pivotisierens. Bei schlecht
konditionierten Systemen kann die mit einem direkten Verfahren ermittelte Niherungslosung
iterativ verbessert werden. )

o Iterative Verfahren: schrittweise verbessern eine vorgegebene Ldsungsniherung (Start-
vektor). Dazu gehbren u.a. das Gesamtschrittverfahren, das Einzelschrittverfahren, die
Relaxationsverfahren und die Methode der konjugierten Gradienten.

Weitere Klassen von Losungsverfahren fiir lineare Gleichungssysteme sind die Mehrgitter-
verfahren und die Gebietszerlegungsmethoden. Nachfolgend werden die iterativen Losungsver-
fahren zusammengefaBt und ihre Parallelisierungsmoglichkeiten werden besprochen.

3.1 Iterative Lésungsverfahren
3.1.1 Gesamtschritt-, Einzelschritt- und Relaxationsverfahren

Das lineare Gleichungssystem A-Z = b A€ R"‘“,regulﬁ:,f,s € R™ lifbt sich in seine Fixpunkt-
form iiberfilhren: # = T - ¥ + & Auf dieser Basis und bei vorgegebener Ausgangsniherung o
146t sich der Iterationsschritt dieser Verfahren folgendermafien ausdriicken:
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Table 1: Iterationsmatrix und Konstantenvektor einzelner iterativer Verfahren

Verfal.xren — JOR (Jacobi fiir w = 1) SOR (GauB-Seidel fiir v = 1)
Iterationsmatrix ' | (1 —w) - J+w - DV (L+U) | (D—w L) '[(1 —w):- D +w-U]
Konstantenvektor & w-D"1.b w(D-w L)'}

Zapp = T 546 keN® (5)

Tabelle 1 fadt die Ausdriicke der Iterationsmatrix T' € R"*" und des Konstantenvektors & €
R™ einzelner iterativer Verfahren zusammen. Dabei wurde folgende Zerlegung zugrundegelegt:
A=D-L-U, D,L,U € R"*", D = Diag(a;;), reguliir, L ist cine strikt untere Dreicckmatrix,
U ist cine strikt obere Dreieckmatrix. Im einzelnen handelt es sich wm folgende Verfahren:

1. Das JOR-Verfahren (engl.:Jacobi-Over-Relaxation).

2, Fir w = 1 erhilt man beim JOR-Verfalren das Jacobi-Verfahren (auch J-Verfahren oder
Gesamtschrittverfahren genannt).

3. Das SOR-Verfahren (engl.:Successive-Over-Relaxation).

4, Fiirw = 1 erhilt man beim SOR-Verfahren das GauB-Seidel-Verfahren (auch Einzelschritt-
verfahren genannt).

Bei den relaxierten Versionen der Verfahren (JOR, SOR), auch Relaxationsverfahren ge-
nannt, stellt w der Relaxationsparameter dar, der zur Konvergenzbeschleunigung eingefiihrt
wird. Ein Ma$ fiir die Konvergenzgeschwindigkeit (auch Konvergenzrate genannt) des Iterati-
onsverfahrens nach Gl.(5) ist der Spektralradius der Iterationsmatrix: p(T') = max{|A|/X ist
Eigenwert von T'}.

) Die Konvergenz des Iterationsverfahrens nach GL.(5) (d.h. der erzeugten Folge {#}) gegen
einen eindeutigen Vektor £*, d.h. limgmoo Tk = &7, £ = T £* 4 ¢, ist Hquivalent zu: p(T') < 1.
Ein Iterationsverfahren konvergiert umso schneller, je kleiner sein Spektralradius p(T") ausfillt.
Weitere Mafe fiir die Konvergenzgeschwindigkeit eines Iterationsverfahrens sind die mittlere
Konvergenzgeschwindigkeit: R.(T) = -1 .log,o||T"|| und die asymptotische Konvergenzge-
schwindigkeit R(T") = liMp—oo Bn(T) = — log;o o(T).

3.1.2 Die Methode der konjugierten Gradienten

Fiir A € R™*", symmetrisch (d.h. A = A7), positiv definit (d.h. £7 - A -7 > 0,VZ € R"), ist
die Losung des linearen Gleichungssystems A -7 = b das Minimum der quadratischen Funktion
F(x) = % -ZT. A f—-fr - b. Diese Aussage 148t sich mit Hilfe der Ausdriicke des Gradientes:
G(¥)=VF =A% -b=0und der Hessematrix H(Z) = A, positiv definit, beweisen. .

Zwei Vektoren 0 # pi,p; € R" heiflen konjugiert oder A-orthogonal fir A € R", positi
definit, wenn (5;)T - A §; = 0. Bei vorgegebenem Startvektor Zo werden fio = 7o = b— A+ %o
initialisiert. Eine verbreitete Version der Methode der konjugierten Gradienten basiert auf
folgender Iteration (k € N9):

()T - 7%
Qg T= 3T a2 =

(@7 A i (©)
Trp1 = Tptoag P (7)
The1 = Tr—op APy (8)
- n (Fas)T - i1 =

= T -
=Y. =

Pr41 k41t AL Px (9)
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Theoretisch liefert die Methode der konjugierten Gradienten die Losung eines linearen Glei-
chungssystems mit £ € R" in hochstens n Schritten. Die Richtungsvektoren fi sind paar-
weise konjugiert, die Residuenvektoren 7 bilden ein Orthogonalsystem und Fi4s minimiert
F(&x + i+ Px) lokal bzgl. ax ausgehend von Fj in Richtung pk.

Bine Verbesserung der Konvergenzeigenschaften der Methode der konjugierten Gradienten
wird durch Vorkonditionierung, d.h. durch Reduktion der Konditionszahl x(A), erreicht, indem
A-& = b in folgende fquivalente Form iiberfithrt wird:

AE o= 1 (10)
A=CctA N, E = CT-g0=C""h (11)
T K(A") < k(A), bei geeigneter Wahl von C (12)

Die Vorkonditionierungsmatrix M = C - CT ist auch symmetrisch, positiv definit. Mit Hilfe
folgender Norm: ||B(£)|la = (T - #)T . A (& - #), mit #* Lésung von A - # = b wird eine
Konvergenzabschlitzung der Methode der konjugierten Gradienten durch folgende Ausdrilicke
angegeben:

U@L 2,(\/:?(70—1)" (13)

[1E(Z0)lla Va(A) + 1
IE(Ex)Ila L TR
TEGII <e = k<3 JK(A) In(3) +1 (14)

Die Methode der konjugierten Gradienten gehtrt zu den Krylow-Unterraum-Methoden. Eine
Darstellung fiber den aktuellen Stand kann [7] entnommen werden. Der Einfluf von Rundungs-
fehlern raf die Konvergenzeigenschaften der Methode der konjugierten Gradienten wird z.B.
in [15] behandelt.

Fiir eine weiterfiihrende Darstellung der Methoden kénnen z.B. [22,23,21,9,18] nachgeschla-
gen werden. Einige numerische Algorithmen auf Transputersystemen sind in [1] enthalten.

3.2 Parallelisierung

3.2.1 Klassische Iterationsverfahren

Zu den klassischen iterativen Methoden gehdren folgende Verfahren: das Jacobi Verfahren,
das Gauf-Seidel-Verfahren, das relaxierte Jacobi Verfahren (JOR), das relaxierte GauB-Seidel-
Verfahren (SOR) und die Richardson Methode. Alle kdnnen auf Parallelrechnern implementiert
werden, wobei GauB-Seidel-Verfahren i.a. als nicht ideal geeignet fiir Parallelisierung gelten,
insbesondere fiir vollbesetzte Matrix A. Die nachfolgenden Betrachtungen konzentrieren sich
auf den Fall der vollbesetzten Matrizen A bei JOR- und SOR-Verfahren. Diese Verfahren werden
folgendermaBen dargestellt:

Dy-Fkp1 = Bu-Ex+b (15)

Das JOR-Verfahren 150t sich aus Tabelle 1 nach Umformung in der Form der GL.(15)
ausdriicken mit B, = (L+U)+ I—ZQ-D (Bu = (bijhigijem i # 7 ¢ bi; = —aij, bi; = l;w‘i -a;;) und
i = %. Die auszufiihrenden Operationen sind deshalb: Matrix-Vektor-Multiplikation By, - £k,
Vektor-Addition B, -Zx+b und Vektor-Multiplikation a;-(B. Eptb), mit ey = Zi=1,m
(A = (aj;)i<ij<n)- Die Parallelisierung der zwei letzten Operationen ist offensichtlich. Paralle-
lisierungsmethoden fiir Matrix-Vektor-Multiplikation kénnen z.B. [2,8] entnommen werden.
Fiir das Jacobi-Verfahren (fiir w = 1) sind die Diagonalelemente von B, Nullen, was zu
einer gesonderten Ausfilhrung der Matrix- Vektor-Multiplikation (Aufspaltung) fiihrt. Nach je-
der Iteration k wird jedem Prozessor die notwendigen Komponenten der Iterationsergebnisse

. ey [
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Das SOR-Verfahren 1iBt sich aus Tabelle 1 nach Umformung in der Form der GI.(15)
ausdriicken mit B, = U + I_T“' +Dund D, = % — L. Nachfolgend wird die Parallelisie-
rung der ji—Form des SOR-Algorithmus besprochen, die effizienter als die ij—Form sein diirfte
und die zeilenweise Abspeicherung der Matrix B,, auf den Prozessoren voraussetzt [8]. Folgende
Zwischenwerte t;f'k fiir Tterationsschritt k und Zeile 0 < j < n,1 < i < n werden definiert®:

Lol bi"I-E{m'b“""::‘-HI . 1€3 5 (16)
' bi4+ Thby -z + T byzft je1<ign
i { =1 [ i

Die Bestimmung der tf:'* schlieft Teilberechnungen zweier aufeinanderfolgenden Iterationen
ein. Fiir die Bestimmung von zf*2 und z5*! werden jeweils die Werte von t{"' filr 1 €<i<jund
t.’:'* fiir j+1 € 1 < n verwendet, Die Parallelisiecrung beruht darauf, daB jeder Prozessor filr scine
zugeordneten Zeilen j folgende Operationen durchfithrt: zf“ =0y -t::'”', anschlieBend wird
z; den anderen Prozessoren mitgeteilt, l;-'"' = by und fiir seine zugeordneten Zellen ¢ worden die

tf"" folgendermaBen bestimmt:

=1,k i 5
g o [ AT by A (17)
! b.'-!-b.-,'-zf“, t=4

3.2.2 Methode der konjugierten Gradienten mit Vorkonditionierung

Vier zeitraubende Operationen sind: der Skalarprodukt, die Vektoraktualisierung, die Matrix-
Vektor-Multiplikation und die Vorkonditionierung. Fiir die ersten drei Operationen ist die
Parallelisierung entweder offensichtlich oder bekannt. Gingige Vorkonditionierungsvarianten
kénnen nicht direkt parallelisiert werden. In bestimmten Fillen kann das Umordnen der Teil-
operationen bzw. der Unbekannten helfen. Die Parallelisierung der Vorkonditionierung fiir die
Methode der konjugierten Gradienten hat zur Entwicklung neuer Vorkonditionierungsvarianten
gefithrt. Oft muf man sich zwischen erhéhter Parallelitit und numerischer Stabilitdt entschei-
den.

Bei vorgegebenem Startvektor & lautet die Initialisierung: 7o = b A Fo, -1 = 0,01 =
0,0 Lésung von:* K - = 7o,p0 = 7 - Jp fiir eine Variante der Methode der konjugierten
Gradienten mit Vorkonditionierung (vgl. Abschnitt 3.1.2 und Algorithmus 24 in [6]), die auf
folgender Iteration (k € N°) basiert:

Pk = Gkt Pr-1 Pk (18)

= - Pk
Gk = APk o = = 19
A o
Ther = Tkt ok Phy Thp1 = Tk — -Gk (20}
D1 Lésung von: I+ &gy1 = Trq1 (21)

e - Pk

Prt1 = Tigr Okery P = p_:] (22)

Die effektivste Parallelisierung erfolgt bei der Berechnung von i und der Bestimmung von
@Wg41. Der Algorithmus hat ein Verhiltnis Gleitpunktoperationen/Speicherzugriffe von 10/7
und zwei Synchronisierungspunkte an beiden Skalarprodukt-Berechnungen. Verbesserungen des
Algorithmus befaBen sich u.a. mit der Erhéhung des o.g. Verhiltnises bzw. der Reduktion der
Synchronisierungspunkte. Die Parallelisierung weiterer Varianten der Methode der konjugierten
Gradienten und der Krylow-Unterraum-Methoden kann man [6] entnehmen.

2b; sind Elemente des Vektors 5, nicht zu verwechseln mit b;; Elementen der Matrix B,.
417 iot sine Approximation von A soda8 X - 7= d einfacher zu l6sen ist als: A-Z = b.
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4 Ergebnisse eines Fallbeispieles
4.1 Variationsproblem

Das Energie-Funktional £(v) = S(v)+P(v) wird zugrundegelegt. Das Stabi]jsierungs-Funktfona.l
mit kontrollierter Stetigkeit S,r und das Straf-Funktional P werden folgendermafen definiert:

L [ ot (r(m ) (ke + 26, + ) + (1= @6} + w))dedy (29
a

Spr(v) =
P(v) = %{Z aailv(zi, i) = dieiy))I* + 2 pilve(zin i) = Pow))N +
{eD -- ier
Z avi["v(rh vi)— ‘i'(z.'.v.'])lg} (24)
i€Q

2 ¢ R? Iat die Referenzfiiche, v(z,y) ist die Approximationsfunktion, plz,w), (=, y) rin:l die
Stetigkeitskontrollfunktionen, p(z,y),7(z,¥) € [0,1], die explizit 'l‘iefcn; un(.l O.rienuerungs-
Unstetigkeiten reprisentieren, d sind die lokalen Tiefenwerte, p,q sind die .Ofmfmerungswcrle
(Komponenten der Oberflichennormale). Es gilt, das Funktional £(v) zu minimieren.

4.2 FEM-Diskretisierung

IDas kontinuierliche Variationsproblem wird zuerst in ein diskretes Variationsprolzlem'mit ?Iife
der Finite-Elemente-Methode (FEM) iiberfiihrt. Die Referenzfliche Q wird mit Hilfe eines
reguliren, kartesischen Gitters mit Knotenabstand h (Seitenlinge) unterteilt. Folgende Finite

Differenzen werden eingesetzt:

1.2 A h h 1. h Aoy ooh
B B gavivny —2vii + V-1 Uy = 7 (viia — 2005+ vhie1h
PR S A b b
Yoy = };?(”e'ﬂ.jﬂ = Vi1~ Vgt )
1,59 h h_ Loa h 9
& = F(Uh15 = vigh % = LT u;) (25)

4.3 Parallelimplementation

Eine Losung folgenden Problems wird gesucht: Finde u € H, sodal £(u) = infyen 4.9(‘1.-), H .iSt
cin linearer Raum der mdglichen Losungen. Eine notwendige Bedingung fir das Minimum im
diskreten Fall und das das daraus entstandene lineare Gleichungssystem lauten:

VE:,(ﬂh)
A-

vsh (uh) + VPR (W) = 0 (26)
= b (27)

21

- Gh. . O

In A sind die Koeffizienten der u}; enthalten und in b sind crﬂ‘..'jd{“j, —itok;, -;—;;-"hq?_j enthal-
ten. Die Losung wird numerisch bestimmt. Die Berechnung erfolgt lokal fiir jeden Gitterknoten;
insgesamt entsteht ein Netzwerk rechnender Molekiile. Ein Beispiel fiir ein inneres F{no}enmo—
lekiil, wo keine Orientierungsunstetigkeit vorhanden ist und es keine Tiefenunstetigkeiten an
angrenzenden Knoten gibt, wird in Abbildung 3 gezeigt.

Das relaxierte GauB-Seidel- Verfahren (SOR) wurde als Gleichungsldser implementiert. Eben-
falls wurden verschiedene Initialisierungsroutinen sowie eine erste Version eines Mehrgitterver-
fahrens implementiert. Folgendes Iterationsschema wurde herangezogen:

2 i 2 I
= B 0By = e, s = cor (28)
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Abbildung 3: Beispiel fiir inneres Knotenmolekiil

Graphische Monitor Rechen- Rechen-
Darstellung Initialisicrung Prozzesor 1 | «es | Prozzesor8

4

Abbildung 4: Prozessortopologie

mit k der Iterationsschritt, w die Schrittweite, ay, ; ist der Koeffizient des ersten Molekiilatoms,
&;,; wird mit der Residuengleichung des k-ten Iterationssschrittes bestimmt, p ist der Spektral-
radius (zur Konvergenzbetrachtungen einzusetzen), N die Anzahl der Gitterknoten.

Zu Testzwecken wurde ein Transputersystem fiir Rechnersehen [17] verwendet, bei dem
fiir das Fallbeispiel als Topologie die lineare Verkettung von bis zu acht Transputern (vgl.
Abbildung 4) gewihlt wurde. Abbildung 5 zeigt die Knotenpartitionierung an der Grenze
zwischen zwei benachbarten Transputern. Abbildung 6 zeigt die Rekonstruktionsergebnisse
eines Polyeders nach 40 Iterationen auf einem 32 x 32-Gitter. Der Speedup und die Effizienz
der Parallelimplementierung wird in Abbildung 7 dargestellt.

5 Ausblick

Interessant wire die Untersuchung der Parallelisierung weiterer Verfahren. So z.B. wird in [10,
11] das Problem der Oberflichenrekonstruktion in zwei Phasen aufgeteilt. Zuerst werden die
Topologie der unbekannten Oberfliche und eine grobe Schitzung ihrer Geometrie bestimmt.
Dann wird mit Hilfe einer Methode zur 'Mesh Optimization’®der Ausgleich der n vorgegebenen
MeBpunkte & € R® verbessert und die Anzahl m der Eckpunkte #; € V von (K,V) wird
reduziert. Im Energiemodell wird die zu minimierende Funktion folgendermafen ausgelegt:

®Bei einem 'Mesh’ (K, V) stellt K die Topologie dar und V = {ii; € R?} stellt die geometrische Realisierung dar
(Menge der Eckpunkte).
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Die beiden angrenzenden
Zeilen werden blockweise
auf einmal transferiert h
Partitionierungs-
grenze

Abbildung 5: Knotenpartitionierung

Abbildung 6: Rekonstruktionsbeispiel



248
Speedup Effizienz(%)
fl T T T T —— 100
- 90
e + 80
- 70
3 4 60
-1 50
2 - 4 40
O Speedup-Wert - 30
1(}/ ® Lifizier &
izienzwert 20
- 10
O | | | | | 1

0
1. 2 & 4 8 &8 7.8

Anzahl der Rechenprozessoren

Abbildung 7: Speedup und Effizienz der Parallelimplementierung

E(K,V) = Eaint(K\ V) + Brep(K, V) + Erey(K, V) (29)
BanK,V) = 3z, (1) - (30)
Eep(K,V) = crop-m (31)
Ereg(K,V) = ‘E & |75 = vk (32)

{ik}eK

Egist(K,V) miBt die Distanz der MeBpunkte zur Oberfliche. In diesem Kontext ist E..p(K,V)
neu und ein Straf-Term, proportional zur Anzahl der Eckpunkte. Der Parameter Crep erl:ub t’ die
Einstellung einer groberen Reprisentation mit niedrigerem Datenausgleich oder einer feineren
Reprisentation mit gréferem Datenausgleich. E.q(K,V) ist nicht wie iiblich ein Straf-Term,
de'r z.B. Stetigkeit kontrolliert, sondern ist ein Regularisierungsterm der darunterliegenden Opti-
mierung. Der Einsatz weiterer parallelisierten O ptimierungstechniquen in diesem Problemkreis
bleibt ebenfalls duBerst ansprechend.
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