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Zusammenfassung

Das Problem dcr dreidimensionalen Oberflachenrekonstruktion wird behandelt. Zunachst
wird das Problem formuliert und ein Losungsansatz mittels eines Variationsproblems wird an-
gegeben. Anschliefiendwerden iterative Losungsverfahrenlinearer Gleichungssystemeauf Paral-
lelrechnern beschrieben, da sie zur numerischen Losung erforderlich sind. Die Ergebnisse eines
Fallbeispieles werden dann vorgestellt. Dazu wird ein aquivalentes Energiemodell der Auf-
gabenstellung aufgebaut, das dazugehorige kontinuicrliche Variationsproblem wird aufgestellt
und anschliefiend wird es mit Hilfe der Finite-Elemente-Methodc diskretisiert. Eine Losung
des enstandenen linearen Gleichungssystemswird mit Hilfe einer Parallelimplementierung des
relaxierten Gaufi-Seidel-Verfahrens (SOR) bestimmt.

1 Einleitung

1m allgemeinen gibt es für dreidimensionale Korpcr zwei Reprasentationsformen: Oberflachen-
und Volumen-Reprasentation. Beim Problem der Oberflachenrekonstruktion wird die erste
Reprasentationsform zugrundegelegt. Die Oberflachenreprasentation kann explizit, implizit
oder parametrisch sein [4J. Die explizite Reprasentation ist der Graph einer Funkton zweier
Veranderlichen. Die implizite Reprasentation wird mit Hilfe folgender l-'unktion angegeben: f:
R3 -+ R, ¡(x, V,z) = Konstante. (x, V,z) sind die Koordinaten der Punkte P auf der Oberflache.
Die parametrische Reprasentation wird folgendermafien angegeben: P = (x( s, t), Ves,t), z( s, t)),
s, t sind die Parameter. In diesem Beitrag werden lediglich Methoden zur Rekonstruktion der
expliziten Form einer Oberflache behandelt, '

Allgemeine Grundlagen über Oberflachenrekonstruktionsverfahren konnen z.B. in [3,20,4,24]
nachgelesen werden. Parallelalgorithmen für das SOR-Verfahren werden in [13,14]diskutiert.
In [19]wurden zur Oberfl1ichenrekonstruktionhierarchische Basisfunktionen und die Methode
der konjugierten Gradienten eingesetzt. Über eine Parallelimplementation wurde in [5]berichtet.

Zwei Einsatzgebiete dieser Rekonstruktionsverfahren in der Robotik sind die Objekterken-
nung im Rahmen von Manipulationsaufgaben und die Gelandemodellierung im Rahmen von
Navigationsaufgaben eines Autonomen Mobilen Robotersystems. 1mAbschnitt 2 wird das Pro-
blem formuliert und ein Losungsansatz mittels eines Variationsproblcms wird angcgebcn. Ab-
schnitt 3 beschrcibt iterative Losungsverfahren linearer Gleichungssystemeauf Parallelrechnern
und.Abschnitt 4 ste1lt die Ergebnissc eines Fallbeispieles vor.
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2 Dreidimensionale OberfUichenrekonstruktion
o
<;!

2.1 Problemformulierung

Gegeben ist eine Menge {p¡ = (Xi,Vi,Z¡),i= 1,...n} e R3 sparlichverteilter Mefidaten,
(X¡,V¡) E n e R2, n ist eine Referenzflache. Solch eine Menge liegt z.D. vor, wenn Ste-
reobildverarbeitungsverfahren, wie die in (16] beschriebene Verfahren, auf einem Stereobildpaar
angewendet worden sind und mit Hilfe der Parameter eines kalibrierten Stereokamerasystemsl
aus den Pixelwerten einzelner zugeordneten Punkte p¡, (X¡L,vid, (X¡R,Vin) jeweils für linke und
rechte Kamera, die X-, Y - und Z-Koordinaten der Punkte p¡ z'urückgewonnen worden sind.
Das zyklopische Koordinatensystem (vgl. Abbildung 1) kann als Referenzkoordinatensystem in
diesem FaJ1 angenommen werden.

Gesueht wird cinc Funktion z = v(x, V), V(x, V) E n, die die vorgegehenen Entfernungs-
da.ten mBgliehst optimal und kontinuierlieh approximierl unler BerUcksichligung der vorgege-
benen 1'lofen. und Orlenllerungsunsleligkcilcn. 111der lIulllerischclI LllsulIg liegell meislens
lediglich diskrete Werte für (X¡,y¡) E n vor. Deshalb Hifit sich auch sagen, daB die Menge
{p¡ = (Xi, Vi, Z¡), V(Xj, Vi) E n, Zj = V(Xj,Vi)} dicht verteiller Entfernungswerle gebildet wird.
Es handelt sich also um die Approximation eincr Funktion zweicr Verandcrlichcn, die bcka.nnt-
lich ein Inversproblem darstellt. Abbildung 2 zcigt ein Dcispicl cincr idcalen Rekonstruktion.

2.2 Losungsansatz als Variationsproblem
Abbildung 2: Ideale OberfHichenrekonstruktion
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Die Losung des oben gestellten Approximationsproblems kann folgendermaBen angesetzt wer-
den:

Sucheu:í(u) = infí(v)v€1i

í(v) = S(v)+P(v)

(1)

(2)

3 Iterative Losung linearer Gleichungssysteme auf
P arallelrechnern

FUr A E Rmxn, X E Rn, bE Rm, wird das folgende lineare Gleichungssystem definiert:

1í ist der Raum der moglichen Losungen. S ist ein Regularisierungs-Funktional. P ist ein
Straf.Funktional, das die Abweichung zwischen Mefidaten und der Funktion v(x, V) mifit.

Um das ursprünglieh gestellte lnversproblem zu regularisieren, werden ftir Rekonstrukti-
onsprobleme stellvertretend ftir eine Problemklasse im Dereich des Rechnersehens Funktionale
eingeführt, die die Stetigkeitsanforderungen in das zu minimierende Funktional í( v) integrieren.
Für Funktionen v : R2 -+ R, Elemente des Sobolevraumes 1ím(R2), wurden auf dem Gebiet der
multivariaten Spline-Approximation folgende Funktionale2 vorgeschlagen:

A.x = b (4)

Ivl;' = Jr f (rr:)(a ~amv .)2dxdyiR' j=O I x' ym-.
(3)

Zwei Klassen von Losungsverfahren für lineare Gleichungssysteme sind:.Direkte Verfahren: liefern abgesehen von Rundungsfehlern die exakte Losung. Dazu

gehoren u.a. der GauBseheAIgorithmus,das GauB-Jordan-Verfahren,das Cholesky-Verfahren.
Verfahren ftir Systeme mit Bandmatrizen und die Methode des Pivotisierens. Bei sehleeht
konditionierten Systemen kann die mit einemdirekten Verfahrenermittelte Naherungslosung
iterativ verbessert werden.

. Iterative Verfahren: sehrittweise verbessern eine vorgegebene LOsungsnaherung (Start-
vektor). Dazu gehoren u.a. das Gesamtsehrittverfabren, das Einzelsehrittverfabren. die
Rela.xationsverfabrenund die Methode der konjugierten Gradienten.

Weitere Klassen von Losungsverfabren für lineare Gleiehungssystemesind die Mehrgitter-
verfahren und die Gebietszerlegungsmethoden. Naehfolgendwerden die iterativen Losungsver-
fabren zusammengefafit und ihre Parallelisierungsmogliehkeitenwerden besproehen.

Um Unstetigkeiten miterfassen zu konnen wurden Funktionale mit kontrollierter Stetigkeit
eingeführt (20,12]. 1m Absehnitt 4 werden explizit für einen Fallbeispiel ausführliche Ausdrüeke
angegeben. Ebenfalls wird dort für die numerisehe Behandlung die Überführung des ursprüng-
liehen Losungsansatzes auf die Losung eines linearen Gleichungssystems besehrieben. Zunaehst
wird deshalb eine Auswahl iterativer Methoden zur Losung linearer Gleichungssysteme auf Par-
allelreehnern zusarnmenfaBend' dargestellt.

1Du kann mit HiICeeinea duugeherigen Stereokameruyatems und herkemmlicher KalibrierverCahren enielt
werden.

'SoIche Funktionale atellen das Quadrat von Seminormen dar. Die Angabe hier errolgt für den zweidimcnaionalen
Fallo

3.1 Iterative Losungsverfahren

3.1.1 Gesarntschritt-, Einzelschritt- und RelaxationsverCahren

Das lineare Gleichungssystem A. X = b,A E R" x",regular, x,b E Rn laBt sich in seine Fixpunkt-
formüberführen:x =T. x + c. Auf dieser Basis und bei vorgegebener Ausgangsnaherung ifJ
¡¡HIt sich der Iterationssehritt dieser Verfahren folgendermaBen ausdrtieken:
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Table 1: Iterationsmatrix und Konstantenvektor einzelner iterativer Verfahren Theoretisch liefert die Methode der konjugierten Gradienten die L6sung eines linearen Glei-

chungssystems mit X E Rn in h6chstens n Schritten. Die Richtungsvektoren Pk sind paar-
weise konjugiert, die Residuenvektoren fÍe bilden ein Orthogona.1system und Xk+l minimiert
F(Xk + ak .Pk) loka.1bzgl. ak ausgehend von Xk in llichtung Pk'

Eine Verbesserung der Konvergenzeigenschaften der Methode der konjugierten Gradienten
wird durch Vorkonditionierung, d.h. durch Reduktion der Konditionszahl K(A), erreicht, indem
A . x = ¡; in folgende aquivalente Form überführt wird:

Xk+! = T'Xk +e, k E N° (5)
A'.X' = i?

'A'=C-I.A.(C-1f,X' = CT.x,b'=C-I.b
K(A') < K(A), bei geeigneter Wahl von C

(10)

(11)
(12)Tabelle 1 fafit die Ausdrücke der Iterationsmatrix T E Rnx" und dcs Konstantenvektors é E

Rn einzelner iterativer Verfahren zusammen. Dabei wurde folgende Zerlegung zugrundcgelegt:
A =D - L - U, D, L, U E ll"xn, D = Diag(a¡¡),regular. L ist ciuc strikt untcrc Drcicckmatrix,
U 1st cine strikt obero Drcleckmatrlx. 1m elnzelnen handelt os slch Ulll Colgendo VcrCahron:

1. Das J O R-VorCahren (cngl.:J acobi.O ver. Re/axatioll).

2. Für"" = 1 erhli.lt man beim JOR-Verfahren das Ja.cobi-VcrCahren (auch J-Verfa.hren odcr

Gesamtschrittverfahren genannt).

3. Das SOR-Verfahren (engl.:Successive-Over-Re/a.xation).

4. Für"" = 1 erhaIt man beim SOR- Verfahren das GauIJ-Seidel- Verfahren (a.uch Einzelschritt-

verfahren genannt).

Bei den rela.x1ertenVersionen der Verfahren (JOR, SOR), auch Relaxationsverfahren ge-
nannt, stellt "" der Relaxationsparameter dar, der zur Konvergenzbeschleunigung eingeführt
wird. Ein Mafi für die Konvergenzgeschwindigkeit(auch Konvergenzrate genannt) des Iterati-
onsverfahrens nach GI.(5) ist der Spektralradius der Iterationsmatrix: p(T) = max{l>'I/>.ist
Eigenwert von T}.

Die Konvergenz des Iterationsverfahrens nach GI.(5) (d.h. dcr erzeugten Folge {Xk}) gegen
einen eindeutigen Vektor X",d.h. limk...ooXk = X", X"= T. X"+ e, ist aquivalent zu: p(T) < 1.
Ein Iterationsverfahren konvergiert umso schneller, je kleincr sein Spektralradius p(T) ausfaIlt.
Weitere Mafie für die Konvergenzgeschwindigkeitcines Iterationsverfahrens sind die mittlere
Konvergenzgeschwindigkeit: Rn(T) = - ~. loglo IITnll und die asymptotische Konvergenzge-

schwindigkeit R(T) = limn...ooR,,(T) = -loglop(T).

Die Vorkonditionierungsmatrix M =C. CT ist a.uch symmetrisch, positiv delinit. Mit Hilfe

Colgcndcr Norm: IIE(x)IIA = (x - X"f .A . (x - X"). mit X" Losung von A . x = ¡;wirdcine
Konvcrgcnza.bschKtzung der Mcthode dcr konjugierten Gradientcn durch Colgcnde AusdrUcke
angcgeben:

IIE(Xk)IIA ::;
IIE(xo)IIA

IIE(Xk)IIA < E =>
IIE(xo)IIA -

( )
k

/KlA)- 1
2. /KlA)+1

1 ~ 2
k ::; "2 . V K( A) .ln( e ) + 1

(13)

(14)

Die Methode der konjugierten Gra.dienten gehOrt zu den Krylow-Unterraum-Methoden. Eine

Da.rstellung über den aktuellen Stand ka.nn [7] entnommen werden. Der Einfiufi von Rundungs-
fehlern f.:¡f die Konvergenzeigenschaften der Methode der konjugierten Gra.dienten wird z.B.

in [15] béandelt.
Für eine weiterführende Darstellung der Methoden k6nnen z.B. [22,23,21.9,18] nachgesch1a.-

gen werden. Einige numerische AIgorithmen auf Transputersystemen sind in [1] enthalten.

3.2 Parallelisierung
Klassische Iterationsverfahren3.2.1

3.1.2 Die Methode der konjugierten Gradienten

Für A E Rnxn, symmetrisch (d.h. A = AT), positiv definit (d.h. xT . A . x > O,Vx E Rn), ist
die L6sung des linearen GleichungssystemsA .x = bdas Minimumder quadratischenFunktion
F(x) = ! .xT .A . x - xT . b. Diese Aussage lií.lJtsich mit HUfeder Ausdrücke des Gradientes:
G(x) = VF =A. x - ¡;= Ound der Hessematrix H(x) = A, positiv definit, beweisen. .

Zwei Vektoren O ,¡: fi, Pi E Rn heiílen konjugiert oder A-orthogonal für A E Rn, positiv
definit, wenn (fil. A Pi = O. Bei vorgegebenem Startvektor Xo werden po = fO = ¡;- A .Xo
initialisiert. Eine verbreitete Version der Methode der konjugierten Gradienten basiert auf
folgender Iteration (k E NO):

Zu den klassischen iterativen Methoden geh6ren folgende Verfahren: das Ja.cobi Verfahren,
das GauB-Seidel-Verfahren, das rela.x1erte Jacobi Verfahren (JOR), das relaxierte GauB-Seidel-

Verfahren (SOR) und die Richardson Methode. Alle k6nnen auf Parallelrechnern implementiert
werden, wobei GauIJ-Seidel- Verfahren La. als nicht ideal geeignet für Parallelisierung gelten,
insbesondere für vollbesetzte Matrix A. Die nachfolgenden Betrachtungen konzentrieren sich
aufden Fall der vollbesetzten Matrizen A bei JOR- und SOR-Verfahren. Diese Verfahren werden

folgendermalJen dargeste11t:

(fkl. fÍeak =
(
- )T A -
Pk . .Pk

Xk+! = Xk+ ak . P"
fÍe+! = fÍe- ak . A .P"
- - (i"k+ll.fÍe+!-
Pk+l = rk+1+ C)T - .Pkrk . rk

(6)

(7)

(8)

(9)

(15)

Das JOR- Verfahren lií.lJt sich aus Tabelle 1 nach Umformung in der Forro der Gl.(15)

ausdrücken mit B", = (L + U) + 1:"'. D (B", = (bij)15iJ5n, i ,¡: j : bij = -aij, b¡i = 1:'" .aii) und

D", = 13. Die auszuführenden Operationen sind deshalb: Matrix- Vektor-Multiplikation B",. Xk,
Vektor-Addition B", 'Xk + ¡;und Vektor-Multiplikation ai.(B", ,xk+b)i. mit exi= a":"i = 1,..., n

(A = (a¡j)¡5i,j5n). Die Parallelisierung der zwei letzten Operationen ist offensichtlich. Parille-
lisierungsmethoden für Matrix- Vektor-Multiplikation konnen z.B. [2,8] entnommen werden.

Für das Jacobi-Verfahren (für "" = 1) sind die Diagonalelemente von B", Nullen, was zu

einer gesonderten Ausführung der Matrix- Vektor-Multiplikation (Aufspaltung) führt. Nach je-
der Iteration k wird jedem Prozessor die notwendigen Komponenten der Iterationsergebnisse
~;t"QtQ;1t

D", .Xk+l = B",.Xk+ b

Verfahren -+ JOR (Jacobi für "" =1) SOR (Gaufi-Seidelfür Iv - 1)
Iterationsmatrix T (1 - ",,).1+ "".D-I .(L+ U) (D-"".L)-I[(1-"").D+",,.U]
Konstantenvektor e "".D-l.b "".(D-"".L)-I.b
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Das SOR-Verfahren Ia.Btsich aus Tabelle 1 nach Umformung in der Form der GI.(15)
ausdrückenmit B", = U + 1:'" . D und D", = g - L. Nachfolgend wird die Parallelisie-
rung der ji-Form des SOR-Algorithmus besprochen, die effizienter als die ij-Form sein dürfte
und die zeilenweise Abspeicherung der Matrix B", auf den Prozessoren voraussetzt [8]. Folgende

Zwischenwerte tV für Iterationsschritt k und Zeile O::; j ::; n, 1 ::; i ::; n werden definiert3:

4 Ergebnisseeines Fallbelspieles

4.1 Variationsproblem

Das Energie-Funktional f( v) = S(v)+1'(v) wird zugrundegelegt. Das Stabilisierungs-Funktional
mit kontrollierter Stetigkeit SPT und das Straf-Funktional l' werden folgendermaBen definiert:

.
k

{
b.+ "i .b'l .xk+1 1 < i < )

.
e,.- I L..I=.. 1 - -¡.- n k} k+1' .b¡+ E'=ibil.x, + E'=l bil.X, ) + 1::;I ::;n

Die Destimmung der t{okschlieBt Teilberechnungen zweier aufeinanderfolgenden Iterationen

ein. Für die Destimmung von x~+2 und x~+1 werden jeweils die Werte von tl,k für 1 ::; i ::; j und

t{okfür j + 1 ~ i ~ n verwendet. Die Parallelisierung beruht da.rauf, daB jeder l'rozessor filr seine

zugeordneten Zeilen j folgende Opera.tionen durchfUhrt: xj+1 := Oj .t~-I,k, 1\lIschlicBcnd wird

xi den a.nderen Prozessoren mitgetellt. t? := bj Ulld fUr SeillO ztlgoordm:toll 'l,eilcn i wordoll dio

t{,k folgendermal3en bestimmt:

(16)
~ in J p(x, V){ r(x, V)( v;", + 2v;v+ v;v) + [1 - r(x, V)](v; + v~)}dxdV

~{L>di[V(Xi'Vi) - d("'"V¡»)]1+ I.>pi[V",(Xi,Vi) - P("'¡,V¡»)]1+¡eD -- ieP

¿ aq¡[Vv(Xi. Vi) - q("'¡,v¡)]1}
ieQ

n e 1111st dio H(1(ercn1.flllcho,lI(x.1I) 1st dio Approxlll\l\lIolISfunktloll, p(x, 11),r(x, 11)sind die
Stetigkcltskontrollfullktionell, p(x, 11).r(x, 11) E [0,1], die explizit Tieren- und Orientierungs-
Unstetigkeiten reprli.sentieren, d sind die lokalen Tiefenwerte, p,q sind die Orientierungswerte
(Komponenten der OberfHichennormale). Es gilt, das Funktiona.l f(v) zu minimieren.

1'(V) =.

SpT(V) =
(23)

(24)

.

{
t }-l,k +b.. k+1 '.J.'

e,k:= i '] . x} , I"f"")
. b.+ b...Xk+1 l. -

)
.

I 1] }, -
(17)

4.2 FEM-Diskretisierung

11

11

3.2.2 Methode der konjugierten Gradienten mit Vorkonditionierung

Vier zeitraubende Operationen sind: der Ska.larprodukt, die Vektoraktualisierung, die Matrix-
Vektor-MuItiplikation und die Vorkonditionierung. Für die ersten drei Operationen ist die
Para.llelisierung entweder offensichtlichoder bekannt. Ga.ngjgeVorkonditionierungsvarianten
konnen nicht direkt para.llelisiert werden. In bestimmten Fiillen kann das Umordnen der Teil-
operationen bzw. der Unbekannten helfen. Die Para.llelisierungder Vorkonditionierung für die
Methode der konjugjerten Gradienten hat zur Entwicklung neuer Vorkonditionierungsvarianten
geführt. Oft muB man sich zwischenerhohter Parallelita.t und numerischer Stabilita.t entschei-
den.

Dei vorgegebenem Startvektor io lautet die Initialisierung: fó = ¡;- A .iO,P-1 = 0,13-1=
O,QoLosung von:4 J(. Qo= ro,po = fÓ . Qofür eine Variante der Methode der konjugierten
Gradienten mit Vorkonditionierung (vgl. Abschnitt 3.1.2 und Algorithmus 24 in [6]), die auf
folgender Iteration (k E NO) basiert:

Das kontinuierliche Variationsproblem wird zuerst in ein diskretes Variationsproblem mit Hife
der Finite-Elemente-Methode (FEM) überführt. Die ReferenzfHiche n wird mit Hilfe eines

reguHi.ren, kartesischen Gitters mit Knotenabstand h (Seitenla.nge) unterteilt. Folgende Finite
Differenzen werden eingesetzt:

h -v"'v -

1h h h h 1h h h
h1 (Vi+1J - 2ViJ + Vi-1,j), vvv = h2(v¡,}+1 - 2Vi,j + Vi,j-1),
1

(
h h h h )

h1 vi+1J+1 - v¡,}+1 - vi+l,} + vi,} ,
1h h h1h h

h"(V'+l,} - ViJ)' Vv = h"(vi,}+l - Vi)
(25)

h -
v"'''' -

Vh ='"

4.3 P arallelimp lementation

Qk+1

fik = Qk + f3k-l . Pk-1- A - Pk
qk = .Pk, ak = ~

Pk .qk

Xk+1 = ik + ak .Pk, rk+1 = i"'¡,- CXk .ifk

Losungvon: J(. Qk+1= i"'¡,+1
-T - f3

Pk+1
Pk+l = rk+1' úJk+1, k = -

Pk

(18)

(19)

(20)

(21)

(22)

Eine Losung folgenden Problems wird gesucht: Finde u E?t, sodaB f(u) = infve1í&(v),?t ist
ein linearer Raum der moglichen Losungen. Eine notwendige Dedingung für das Minimum im
diskreten Fa.llund das das daraus entstandene lincare Gleichungssystemlauten:

V&;T(Uh) = vs;r<é) + Y'ph(uh) = O
A.¡¡ = ¡;

(26)

(27)

Die effektivste Para.llelisierung erfolgt bei der Berechnung von ifk und der Bestimmung von
Qk+1' Der Algorithmus hat ein Verhiiltnis Gleitpunktoperationen/Speicherzugriffe von 10/7
und zwei Synchronisierungspunkte an beiden Skalarprodukt-Berechnungen. Verbesserungen des
Algorithmus befal3en sich u.a. mit der Erhohung des o.g. Verha.ltnises bzw. der Reduktion der
SynchroIDsierungspunkte. Die Para.llelisierung weiterer Varianten der Methode der konjugierten
Gradienten und der Krylow-Unterraum-Methoden kann man [6] entnehmen.

h h

In A sind die Koeffizientender u?,}entha.lten und in ¡;sindatd?'i' ~prJ' ~q?,} entha.l-
ten. Die Losung wird numerisch bestimmt. Die Berechnungerfolgt lokal für jeden Gitterknoten¡
insgesamt entsteht ein Netzwerk rechnender Moleküle. Ein Deispielfür ein inneres Knotenmo-
lekül, wo keine Orientierungsunstetigkeit vorhanden ist und es keine Tiefenunstetigkeiten an
angrenzenden Knoten gibt, wird in Abbildung 3 gezeigt.

Das rela.xierteGauB-Seidel-Verfahren (SOR) wurde als Gleichungsloserimplementiert. Eben-
falls wurden verschiedene Initialisierungsroutinen sowieeine erste Version eines Mehrgitterver-
faluens implementiert. Folgendes Iterationsschema wurde herangezogen:

3b¡sind Elemente des Vektors b. nicht zu verwechseln mit b¡j Elementen der Matrix B",.
4K ist eine ADDroximation von A. soda6 K .ii = J einfacher zu ¡osen ist als: A .¡ = b.

2
(k 1) ~iJ --~h(k) - u~. - - úJ-, úJopt- 1+ V1- P-uiJ - 1,] al

, PmB'" = cos .!!.N
(28)
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Abbildung 4: Prozessortopologie

nút k der Iterationsschritt, INdie Schrittweite, aló,i ist der Koeffizientdes ersten Molekülatoms,
{¡,j wird nút der Residuengleichungdes k-ten Iterationssschrittes bestimmt, p ist der Spektral-
radius (zur Konvergenzbetrachtungen einzusetzen), N die Anzahl der Gitterknoten.

Zu Testzwecken wurde ein Transputersystem für Rechnersehen [17] verwendet, bei dem
für das Fallbeispiel als Topologie die lineare Verkettung von bis zu acht Transputern (vgl.
Abbildung 4) gewahIt wurde. Abbildung 5 zeigt die Knotenpartitionierung an der Grenze
zwischen zwei benachbarten Transputern. Abbildung 6 zeigt die Rekonstruktionsergebnisse
eines Polyeders nach 40 Iterationen auf einem 32 X 32-Gitter. Der Speedup und die Effizienz
der Parailelimplementierung wird in Abbildung 7 dargestellt.

5 Ausblick Abbildung 6: Rekonstruktionsbeispiel

Interessant wli.redie Untersuchung der Parallelisierung weiterer Verfahrcn. So z.B. wird in [10,
11) das Problem der OberfH¡'chenrekonstruktionin zwei Phasen aufgeteilt. Zuerst werden die
Topologie der unbekannten OberfHicheund eine grobe Schii.tzungihrer Geometrie bestimmt.
Dann wird mit Hilfe einer Methode zur 'Mesh Optimization'5der Ausgleich der n vorgegebenen
MeJlpunkte x¡ E R3 verbessert und die Anza.hl m der Eckpunkte Vj E V von (1(, V) wird
reduziert. 1m Energiemodell wird die zu minimierende Funktion folgendermaBenausgelegt:

'Beieinem'Me.h'(K,V) .tem K dieTopologiedar und V = {ii'óe R3} .tellt die geometri.cheRealiaierungdar
(Menge der Eckpuokte).
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E(K, V) = Edill(K,V) + Erep(K,V) + Ereg(K.V)n

Edi61(K,V) = L d2(ii' <PV(/](/)
;=1

Erep(K, V) = crep' m

Ereg(K,V) = L 1<'lItij - tikll
{j,k}eK

(29)

(30)

(31)

(32)
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Abbildung 7: Speedup und Effizienz der Parallelimplementierung

Edi61([(,V) mi1!tdie Distanz der Me1!punktezur Oberfliiche. In diesem Kontext ist Erep(K, V)
neu und ein Straf-Term, proportional zur Anzahl der Eckpunkte. Der Parameter creperlaubt die
Einstellung einer groberen Repriisentation mit niedrigerem Datenausgleich oder einer feineren
Repriisentation mit grofierem Datenausgleich. Ereg([(,V) ist nicht wie üblich eín Straf.Term,
der z.B. Stetigkeit kontrolliert, sondern ist ein Regularisierungsterm der darunterliegenden Opti-
mierung. Der Einsatz weiterer parallelisierten Optimierungstechniquen in diesem Problem.kreis
bleíbt ebenfalls aufierst ansprechend.
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